Abstract:
An apparatus for determining a driving situation of a vehicle to be monitored is disclosed. The apparatus comprises a provider configured to provide measurement values, wherein the provider is configured to obtain the measurement values at non-equidistant sampling instants, wherein the measurement values comprise information relating to the driving situation of the vehicle to be monitored. The apparatus further comprises an evaluator configured to evaluate a plurality of the measurement values with respect to a measure indicating a temporal variation of the plurality of measurement values.
Abstract:
Embodiments provide a circuit, a method, and a computer program configured to detect mechanical stress and a circuit, a method, and a computer program configured to monitor safety of a system. The detection circuit is configured to detect mechanical stress of a semiconductor circuit. The detection circuit comprises a stress monitor module configured to monitor mechanical stress of the semiconductor circuit and to provide monitor information related to a mechanical stress level of the semiconductor circuit. The detection circuit further comprises an activation signal generator configured to generate an activation signal comprising activation information related to the mechanical stress level of the semiconductor circuit if the monitor information indicates that a mechanical stress level criterion is fulfilled by the semiconductor circuit.
Abstract:
A sensor interface operates to communicate a sensed quantity along one or more processing pathways and in different data representations. The signal representations can be swapped along one or more locations of the signal processing branches. These branches are independent from one another and combined at an interface component for transmission along a single path or node for a control unit.
Abstract:
Embodiments relate to an indirect tire pressure monitoring systems (TPMS) and methods that utilize anti-lock braking system (ABS) sensed signals coupled to circuitry and/or controllers to process the sensed signals using a multidimensional resonance frequency analysis (MRFA) technique. In some embodiments, additional information from other sensed signals or stored data settings for non-tire variables and parameters can be incorporated into the MRFA. Thus, in an embodiment an indirect TPMS comprises at least one signal from an ABS, such as a wheel speed signal, and an electronic control unit (ECU) that processes the at least one signal from the ABS using at least one MRFA technique. Unlike conventional MRFA approaches that look for a single resonance frequency, the MRFA of embodiments uses a spectral analysis of tire vibrations as determined from the sensed ABS signals over different points in the spectrum that can reflect different vibration modes and different corresponding resonance frequencies.
Abstract:
Safety devices are provided having a power generating part and a safety-critical part. A conducting ring is provided at least around the power generating part. The ring may be connected to a reference potential such as ground.
Abstract:
A receiver for receiving messages from a transmitter includes a controller and a driver stage for providing a supply voltage to the transmitter based on a control signal. The controller is configured to provide the control signal to compensate for changes of the supply voltage caused by a modulation of the current consumption of the transmitter, such that the supply voltage remains in a predefined range. Furthermore, the controller is configured to evaluate a series of succeeding values of the control signal to derive a message generated by the transmitter by modulating its current consumption.
Abstract:
An angle sensor may include a first angle measurement path to determine an angular position based on sensor values from a first set of sensing elements. The angle sensor may include a second angle measurement path to determine the angular position based on sensor values from a second set of sensing elements. A type of the second set of sensing elements is different from a type of the first set of sensing elements. The angle sensor may include a safety path to perform a set of safety checks, the set of safety checks including a first vector length check associated with the first angle measurement path and a second vector length check associated with the second angle measurement path. The angle sensor may include an output component to provide an indication of a result of the set of safety checks.
Abstract:
The present disclosure relates to an apparatus for position detection, including a multipole magnet with pole pairs extending along a multipole extension direction, a magnetoresistive sensor including a first sensor bridge sensitive for a first in-plane magnetic field component and a second sensor bridge sensitive for a second in-plane magnetic field component, wherein the first sensor bridge and the second sensor bridge are arranged in-plane and are spaced apart along a sensor axis, wherein the multipole extension direction and the sensor axis are rotated by a rotation angle larger than 20° and less than 70° to each other.
Abstract:
In some implementations, an angle sensor may receive a first x-component value and a first y-component value from a first set sensing elements and a second x-component value and a second y-component value from a second set of angle sensing elements. The angle sensor may perform a safety check including determining a first range of angles associated with a target object based on a relationship between a magnitude of the first x-component value and a magnitude of the first y-component value; determining a second range of angles associated with the target object based on a relationship between a magnitude of the second x-component value and a magnitude of the second y-component value; and determining whether the second range of angles is a subset of the first range of angles. The angle sensor may output an indication of a result of the safety check.
Abstract:
The described techniques facilitate the secure transmission of sensor measurement data to an ECU by implementing an authentication procedure. The authentication procedure includes an integrated circuit (IC) generating authentication tags by encrypting portions of sensor measurement data. These authentication tags are then transmitted together with the sensor measurement data as authenticated sensor measurement data. The ECU may then use the authentication tags to authenticate the sensor measurement data based upon a comparison of the portions of the sensor measurement data sensor measurement data to the authentication tag that is expected to be generated for those portions of sensor measurement data.