Abstract:
The present specification relates to a wearable device and a method of controlling therefor. According to one embodiment, a method of controlling a wearable device includes the steps of detecting a real object and displaying a first virtual object based on the detected real object when the real object is detected, and detecting the real object and a first interaction and displaying a second virtual object when the real object and the first interaction are detected, wherein the second virtual object is displayed based on the second virtual object information transmitted by the external device.
Abstract:
A detachable head mounted display (HMD) device includes a display unit configured to display a user interface, a detached sensor unit configured to detect whether the HMD device has been affixed to eye-glasses, a sensor unit configured to detect an input signal generated when the eye-glasses to which the HMD device is affixed are touched, and a controller configured to control the display unit, the detached sensor unit, and the sensor unit. The controller is further configured to acquire identification information of the eye-glasses if the HMD device detects that the HMD device is affixed to the eye-glasses, to acquire a look up table related to the identification information, to acquire a control input related to the input signal from the look up table in response to the detected input signal, and to control the user interface to perform a function corresponding to the control input.
Abstract:
A display device and a method for controlling the same are disclosed in which a threshold range for generating a panorama image is indicated in accordance with a bending angle of a bending portion provided between a first area of a body provided with a first camera and a second area of a body provided with a second camera, whereby the panorama image may be generated using the first camera and the second camera.
Abstract:
Disclosed are a portable device and a control method thereof for convenient and accurate dimming control. The portable device includes a foldable display unit, a state sensor unit to detect folded and unfolded states of the foldable display unit, an input sensor unit to sense user input and a processor to control the respective units. The processor converts the portable device from a first dimming mode to a second dimming mode upon detection of change of the foldable display unit from the unfolded state to the folded state, perform dimming of the foldable display unit based on a dimming time different with the second dimming time when the user input is sensed in the second dimming mode within a second dimming time, and performs dimming of the foldable display unit after the second dimming time has passed when the user input is not sensed in the second dimming mode within the second dimming time.
Abstract:
A method for controlling a portable device is disclosed. The method includes displaying a plurality of augmented reality (AR) images, detecting a gaze of a user, determining a target object based on the gaze of the user, identifying an associated AR image that is associated with the target object and a non-associated AR image that is not associated with the target object from the plural AR images, and maintaining display of the associated AR image and terminating display of the non-associated AR image when the target object is a moving object.
Abstract:
A portable device is disclosed. A method of controlling a portable device, comprising the steps of capturing an image in front of the portable device, detecting a marker object from the image, displaying a virtual image corresponding to the marker object based on a location of the marker object, and terminating a display of the virtual image corresponding to the marker object, when the detecting of the marker object is terminated, terminate a display of the virtual image based on a first terminate mode if the gaze location of the user is detected at a first location, and terminate the display of the virtual image based on a second terminate mode if the gaze location of the user is detected at a second location.
Abstract:
A micro-head mounted display device that may be detachably affixed to eye-glasses and a method for controlling the same are disclosed. A method for controlling a detachable HMD device, detecting that the HMD device is affixed to eye-glasses, acquiring identification information of the eye-glasses, acquiring a look up table related to the identification information, receiving an input signal generated when the eye-glasses to which the HMD device is affixed are touched, from the sensor unit, acquiring a control input related to the input signal from the look up table, and performing a function corresponding to the control input.
Abstract:
A smart watch and a control method thereof are disclosed. The smart watch includes a first sensor unit configured to detect whether the smart watch is worn, a display unit configured to display visual information, a second sensor unit configured to detect movement of the smart watch, and a processor configured to control the first sensor unit, the display unit, and the second sensor unit. If first movement of the smart watch is detected on an arm of a user while the smart watch is being worn, the processor obtains direction and distance of the first movement of the smart watch. If the direction of the first movement is a first direction and the distance of the first movement is equal to or more than a first threshold distance, the processor performs a first function corresponding to the first direction.
Abstract:
A method for controlling a head mounted display (HMD) includes detecting an external device, displaying an augmented reality image as a first mode, changing the first mode to a second mode when the gaze of the user to the augmented reality image is detected in the first mode, and executing a function corresponding to the augmented reality image when the augmented reality image and the external device are aligned in the second mode. The first mode is a mode in which a display position of the augmented reality image depends on a position of the external device the second mode is a mode in which the display position of the augmented reality image remains fixed even when the position of the external device is changed.
Abstract:
A foldable display device including a foldable display unit being in a folded state when the foldable display device is folded and being in an unfolded state when the foldable display device is unfolded, the foldable display unit being divided into a first area which is a border area, a second area which is a folding area and a third area located between the first area and the second area, touch sensor units of the first area, the second area and the third area configured to detect control input for the display unit, and a controller configured to control the display unit and the touch sensor units, wherein the controller is further configured to detect the state of the foldable display unit, and deactivate the touch sensor unit of the first area and activates the touch sensor units of the second area and the third area, when the foldable display unit is in the unfolded state.