Abstract:
A wireless communication base station apparatus which is able to prevent deterioration in the throughput of LTE terminals even when LTE terminals and LTE+ terminals coexist. In this apparatus, based on the mapping pattern of the reference signals used only in LTE+ terminals, a setting unit (105) sets, in each subframe, the resource block groups where the reference signals used only by the LTE+ terminals are mapped. For symbols mapped to the antennas (110-1 to 110-4), an mapping unit (106) maps, to all the resource blocks within one frame, cell specific reference signals used for both LTE terminals and LTE+ terminals. For the symbols mapped to the antennas (110-5 to 110-8), the mapping unit (106)maps, to the plurality of resource blocks, of which part of the resource block groups is comprised, in the same subframe within one frame, the cell specific reference signals used only for LTE+ terminals, based on the setting results inputted from the setting unit (105).
Abstract:
Disclosed is a terminal apparatus in which: a decoding section (210) that stores, in a retransmission buffer, downlink data transmitted by each of the plurality of component carriers and decodes the downlink data; and a radio transmitting section (222) that transmits, using a first component carrier of the plurality of component carriers, a response signal for first downlink data received using the first component carrier and a response signal for second downlink data received using a second component carrier of the plurality of component carriers. In addition, a second buffer is divided into regions respectively corresponding to retransmission processes based on a specific value determined by a combination of a first configuration pattern that is set in the first component carrier and a second configuration pattern that is set in the second component carrier.
Abstract:
The present invention is a terminal capable of suppressing increase in transmit power required for transmitting a CSI report at a terminal while widely securing candidates for motion control. A reception processing unit (203) receives multiple reference signals from multiple transmission points, first information indicating the multiple transmission points, and second information indicating at least one transmission point included in the multiple transmission points; a CSI generation unit (206), on the basis of the first information, generates first channel information including channel information corresponding to each of the multiple reference signals from the multiple transmission points, and on the basis of the second information, generates second channel information including channel information corresponding to the reference signals from the at least one of the transmission points; and a transmission signal formation unit (208) transmits the first channel information and the second channel information which have been generated.
Abstract:
In a base station (100), a division number calculating unit (103) calculates the division number of a PRB pair on the basis of a first number of REs capable of mapping an allocation control signal, a second number of REs capable of mapping signals other than the allocation control signal, and a reference value, which is the number of REs satisfying the reception quality request in a terminal (200) for the allocation control signal, in each PRB pair. Then, a control signal mapping control unit (104) determines a search space by determining a control channel element group constituting a plurality of mapping unit resource region candidates within a CCE group obtained by separating each PRB pair contained in a first group into the same number as the division number.
Abstract:
A transmission device capable of flexibly setting the transmission mode, even in cases when the candidates for the resource domain to be used to transmit a control signal to a terminal include both a first downlink resource domain that can be used as either a control channel or a data channel and a second downlink resource domain that can be used as a control channel, wherein a transmission mode setting unit (101) sets one transmission mode for each of the first and second downlink resource domains, said transmission mode being selected from among a plurality of transmission modes in which a plurality of control signal formats and the transmission methods that correspond to the control signal formats and are used to transmit data to a terminal (200) have been associated.
Abstract:
Provided are a wireless communication terminal apparatus, a radio communication base station apparatus and a wireless communication method whereby the increase in the number of signaling bits can be suppressed, while the SRS capacity can be improved. RS type determining unit (105) determines, based on scheduling information, that the signal is an SRS signal accompanied by no data or a DMRS signal accompanied by data. CS amount deciding unit (106) holds a CS amount for DMRS and a CS amount for SRS that are defined such that the CS amount for SRS includes a CS amount not included in the CS amount for DMRS. The CS amount deciding unit (106) uses CS amount notification information, which is included in the scheduling information, and the CS amount definition to derive a CS amount in accordance with the RS type outputted from the RS type determining unit (105).
Abstract:
A radio communication terminal that increases the ACK/NACK resource utilization efficiency while preventing ACK/NACK collision, and that causes no unnecessary reduction of the PUSCH band in a system that transmits E-PDCCH control information. The radio communication terminal adopts a configuration including a receiving section that receives a control signal including an ACK/NACK index via an enhanced physical downlink control channel (E-PDCCH) transmitted using one configuration from among one or a plurality of configuration candidates, a control section that selects a resource to be used for an ACK/NACK signal of downlink data from among specified resources specified beforehand based on E-PDCCH configuration information used for transmission or reception of the E-PDCCH and the ACK/NACK index, and a transmitting section that transmits the ACK/NACK signal using the selected specified resource.