Abstract:
System(s) and method(s) are provided for generating phase-noise resilient channel quality indicator(s). A pilot signal utilized to determine a channel quality indicator is rotated to be aligned to a phase reference signal. Separate noise evaluations in quadrature and in-phase directions are utilized, at least in part, to generate a net noise estimate that is phase-noise compensated or resilient. For example, various combination schemes of quadrature and in-phase noise evaluations can be exploited to generate a net noise estimate, the schemes include weighted average of in-phase and quadrature noise estimates and running averages thereof. Simulation of net noise estimates as a function of geometry conditions reveal that the combination schemes provide substantive mitigation of phase-noise, thus making CQI generation phase-noise resilient.
Abstract:
Techniques for performing adaptive channel estimation are described. A receiver derives channel estimates for a wireless channel based on received pilot symbols and at least one estimation parameter. The receiver updates the at least one estimation parameter based on the received pilot symbols. The at least one estimation parameter may be for an innovations representation model of the wireless channel and may be updated based on a cost function with costs defined by prediction errors. In one design, the receiver derives predicted pilot symbols based on the received pilot symbols and the at least one estimation parameter, determines prediction errors based on the received pilot symbols and the predicted pilot symbols, and further derives error gradients based on the prediction errors. The receiver then updates the at least one estimation parameter based on the error gradients and the prediction errors, e.g., if a stability test is satisfied.
Abstract:
Schemes to time-align transmissions from multiple base stations to a terminal. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the terminal within a particular time window. In one scheme, a time difference between two base stations is partitioned into a frame-level time difference and a chip-level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for each candidate base station relative to a reference base station. Additionally, the terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal sets the frame-level part to a predetermined value (e.g., zero).
Abstract:
A method and apparatus are provided for adapting a pilot filter based on the velocity of a wireless communication device (WCD) in relation to a wireless network infrastructure. The pilot filter is adapted by determining pilot coefficients for the pilot filter based on the WCD velocity. The pilot filter may be located in the WCD, or in the network infrastructure, or in both.
Abstract:
A method and apparatus for using information about a mobile terminal's location relative to a base station can improve performance of a communication system. In addition, information about the mobile terminal's velocity relative to the base station may be used to improve performance of the communication system. The location information may be used to estimate a nominal PN offset, and a set of PN offset to use, for processing communication signals. The velocity information may be used to estimate a nominal frequency of the communication signals.
Abstract:
Techniques to acquire and track a received signal based on one or more transmitted pilots. In an aspect, a frequency tracking loop is provided and supports a number of loop modes (e.g., acquisition and tracking modes). Each loop mode may be associated with a respective frequency detector and a set of values for a set of elements in the loop. In another aspect, several frequency detectors are provided for deriving estimates of the frequency error in the downconversion (e.g., from radio frequency to baseband). In one design, maximum likelihood estimates of the frequency error are derived based on the recovered pilot symbols. In another design, the frequency error estimates for the multipath are derived based on the frequency error estimated for each transmitted signal.
Abstract:
Aspects of the present disclosure provide adaptive radio link monitoring for machine type communication(s) (MTC), enhanced MTC (eMTC), and/or narrowband Internet-of-Things (NB-IoT). In one aspect, a method is provided which may be performed by a user equipment (UE). The method generally includes receiving a first configuration of parameters for receiving downlink control channel signaling, the first configuration of parameters associated with a first coverage level; measuring at least one parameter related to channel conditions; determining one or more dynamic radio link monitoring (RLM) threshold values for the at least one parameter based, at least in part, on the first configuration of parameters; and performing RLM functions based on the one or more dynamic RLM threshold values. The threshold may comprise early out thresholds that occur before out-of-sync (OOS) or in-sync thresholds. The thresholds may be determined using lookup tables.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for optimizing real time services (e.g., such as a voice over Long Term Evolution (LTE) (VoLTE)) for devices with limited communications resources, such as machine type communication (MTC) devices and enhanced MTC (eMTC) devices. In one aspect, a UE determines a first configuration of subframes within at least one radio frame available for the UE and other UEs to use for bundled communications with a BS. The UE receives an indication of one or more subframes within the at least one radio frame that are unavailable for bundled uplink transmissions, and determines a second configuration of subframes to use for bundled communications based on the indication. The UE overrides the first configuration of subframes with the second configuration of subframes, and communicates with the BS using the second configuration of subframes. Numerous other aspects are provided.