Abstract:
Die Erfindung betrifft eine mehrschalige Wand zur Trennung unterschiedlicher Drücke, Medien und/oder Temperaturen. Die Wandschalen (1a-1b) sind zueinander in Abständen angeordnet, und in den Zwischenräumen herrschen zueinander unterschiedliche Drücke, Medien und/ oder Temperaturen.
Abstract:
Provided is a highly practical pressure vessel in which there is minimal inside diameter deformation even if openings in a center inlet/outlet part are large, and there is little pressure-induced elongation from a center to both ends. This pressure vessel is composed of a tube body made of a fiber-reinforced resin, wherein: a center inlet/outlet part that lets a liquid in or out is provided to a tube-body-axial center part on a peripheral surface of the tube body; end-part inlet/outlet parts that let a fluid in or out are provided to tube-body-axial end parts of the tube body; the tube body is configured from a helical layer of which fibers are inclined at an angle of from ±40° to less than ±50° relative to a tube-body-axial direction, a reinforcing layer of which fibers are inclined at a greater angle than the helical layer relative to the tube-body-axial direction, and a seal layer constituting an innermost layer; a breakaway part that breaks away circumferentially outward from the seal layer is provided to a position on the helical layer where the center inlet/outlet part is provided; the reinforcing layer is configured from an inward reinforcing layer and an outward reinforcing layer provided respectively to inward and outward sides of the helical layer so as to enclose the breakaway part of the helical layer therebetween; and the center inlet/outlet part is provided so as to penetrate the inward reinforcing layer, the breakaway part of the helical layer, and the outward reinforcing layer.
Abstract:
Provided is a stirred tank polymerization reactor system having a reactor tank, a stirring assembly including a rotatable shaft that extends through a wall of the tank, and a triple barrier mechanical seal. The mechanical seal includes an outer cylinder mounted in the wall of the tank, an inner cylinder that is rotatable relative to the outer cylinder and connected to the shaft, and first, second, and third fluid barrier seals mounted between the outer and inner cylinders at different positions along the axis of rotation of the inner cylinder. First and second sources of pressurized barrier fluid are connected between the first and second pressure fluid barrier seals and the second and third barrier seals, respectively. The three barrier seals advantageously “step down” the differential pressure experienced by the uppermost barrier seals, substantially reducing mechanical stresses experienced by the annular sealing rings and seats. The mechanical seal can further include a closed loop cooling channel in its outer cylinder that is connected to a circulating source of cooling fluid.
Abstract:
The invention describes a high-pressure vessel for holding samples which are to be heated, the high-pressure vessel having: a lower part (5, 104) and a lid part (6, 105) which can be locked together and when closed surround on all sides a reaction chamber for initiating and/or promoting chemical and/or physical high-pressure reactions, it being possible for the lower part (5, 104) and the lid part (6, 105) to be moved relative to each other in an automated fashion between an open access position and a closed microwave processing position, a sample holder (101) and/or a vessel insert (9) being connected to the lid part (6, 105).
Abstract:
The vessel of the invention includes a side wall and an end wall, and is characterized in that the end wall is a domed end wall, of thickness EI including an inner layer CI providing corrosion resistance and an outer layer CE of thickness EE at least equal to the thickness EI of the inner layer CI. The inner and outer layers are rigidly joined by a first assembly device. Inner layer CI is formed from a multilayer material including an internal layer CI for providing corrosion resistance and an external layer CIS, the internal CIC and the external CIS layers being rigidly joined by a second assembly device. The invention enables inexpensive manufacture of large vessels.
Abstract:
Microwave heating apparatus (1) for chemical-physical processes comprising a microwave source (4), for example a magnetron or a klystron or a solid state oscillator (FET transistor), operatively connected to an end of an antenna (10) at a connector (12). The antenna (10) is put in a reaction container (3) where it irradiates with microwaves a reacting material (25). In particular, the antenna (10) can be coated with a sheath (15) that avoids a direct contact with the reacting material (25), or alternatively, can be put into in a housing (7) executed in the container (3). The housing (7), made of a material transparent to microwaves, can cross the reaction container (3) for a part thereof, or for all its width. The arrangement of the antenna (10) in the reacting material (25) provides a quick and effective heating. Furthermore, it is possible to increase considerably the selectivity, the control and the efficiency of a chemical-physical processes to which the heating technique above described is applied. This allows also to provide a considerable energy saving with respect to apparatus of prior art.
Abstract:
The vessel assembly includes a polymeric cylinder and a circular polymeric cap for the cylinder, the cylinder being closed at one end and open at the other end to receive the cap. The open end of the cylinder has a lip that is beveled inwardly from the open end, and the circular polymeric cap has a beveled lower edge that engages the beveled lip when the cap is place upon the polymeric cylinder. For high pressure applications, a choke cylinder depends from the beveled lower edge of the cap, and has an outer diameter substantially the same as the inner diameter of the polymeric cylinder so that the choke provides a self sealing mechanism for the cylinder as pressure from a chemical reaction increases within the cylinder. A composite sleeve surrounds the polymeric cylinder, and includes at least one wound fabric layer in which the winding can be a filament or a yarn.
Abstract:
The invention relates to the field of powder metallurgy, in particular to the design of autoclaves for manufacturing of composite materials by treatment of workpieces of discrete materials, mostly powders, at high pressures and temperatures. The autoclave module contains the vessel that includes hermetically sealed movable end closures, the rams restricting the axial shift of these closures, and the pressure yoke with columns and winding made of high-strength steel wire, whereby the pressure yoke is made in the form of three oval yoke sectionsnulltwo lateral sections encompassing the rams, and one central section encompassing the rams and the vessel with closures, all of them equidistant from each other on the ram's length, whereby each of the lateral oval sections is made in such a way as to allow opposite shift while the central section is made in such a way as to allow shift in the direction which is perpendicular to the vessel's axis and parallel to the rams' axis, for a length ensuring free withdrawal of the rams and the end closures. The invention allows to reduce the metal consumption of the pressure module by a factor of 2 to 3 compared to the known analogs, and to enhance the reliability and the operational safety of the apparatus.
Abstract:
The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which are oriented in the peripheral direction and are embedded in a matrix of epoxy resin or polyurethane. By applying the axial prestress to the pressure vessel (3), the tangential stress is distributed more uniformly over the wall thickness of the high-pressure vessel (3), the stress decreasing at the inside of the wall and increasing at the outside thereof. As a result, the innermost fibers of a high-pressure vessel (3) made of composite material are subjected to appreciably less stress, which has a beneficial effect on the life of the high-pressure vessel (3), and all fibers of the wall are utilized effectively. Preferably, the prestressing means comprise a pressure ring (14) which can be brought into engagement around the pressure-generating piston (9) with one end face of the high-pressure vessel (3).
Abstract:
A method for repairing and restoring the functionality of equipment subjected to internal corrosion during its operation at high or medium pressure in a plant for the synthesis of urea. The method includes the cleaning of the corroded area, the formation of suitable supporting and/or holding surfaces for the placement of a new metallic lining, the formation of a new anticorrosive sealed off lining, obtained by positioning and welding flat elements and metallic plates which are suitably shaped and placed next to each other to become adapted to the internal profile of the equipment. The spaces and interstices below this new lining all communicate with at least one weep-hole present in the pressure resistant body. The entire repair is carried out through the manhole of the equipment and enables the restoring of its functionality for times similar to the normal duration of corresponding newly constructed equipment.