Abstract:
A device and method of using the device to detect the presence and composition of clots and other target objects in a circulatory vessel of a living subject is described. In particular, devices and methods of detecting the presence and composition of clots and other target objects in a circulatory vessel of a living subject using in vivo photoacoustic flow cytometry techniques is described.
Abstract:
A device and methods for the non-invasive manipulation and detection of target objects such as cells, pathogens, microparticles, and nanoparticles in vivo using an external magnetic field are described. In one aspect, a device and method for capturing and detecting intrinsically magnetic target objects or target objects labeled with at least one magnetic particle within the area of interest using an in vivo flow cytometer are described.
Abstract:
Apparatus and method for removal of particles and VOC from an airstream, in which particles carried by the airstream are charged by a corona ionizer and then collected by an electrically enhanced filter downstream of the ionizer. A catalytic filter downstream of the electrically enhanced filter removes VOC as well as ozone generated by the ionizer.
Abstract:
A particle count measurement device includes a preprocessing section configured to place an aerosol introduced into a measurement region in an electrical state of any of a neutralized state, a positively charged state or a negatively charged state, a unipolar charging section configured to place the aerosol which has been introduced in an electrical state different from at a time of introduction, an ion trap arranged on a downstream of the unipolar charging section in terms of a flow of the aerosol for generating an electric field that draws only gas ions in the aerosol, an exhaust mechanism configured to discharge the aerosol from the measurement region at a constant flow rate, and an ammeter for detecting, as a measurement value corresponding to a particle count concentration, a difference between current supplied by the unipolar charging section and current flowing into the ion trap.
Abstract:
Apparatus and method for removal of particles and VOC from an airstream, in which particles carried by the airstream are charged by a corona ionizer and then collected by an electrically enhanced filter downstream of the ionizer. A catalytic filter downstream of the electrically enhanced filter removes VOC as well as ozone generated by the ionizer.
Abstract:
An electrode support for an electrode of an electrically-enhanced air filtration system includes a conductor extending through the electrode support and electrically connectible to the electrode and to a power supply. An insulative layer is located around the conductor and the electrode support is configured to position the electrode in a frame of the air filtration system. An air filtration system includes a frame directing an airflow through the air filtration system and an electrode located in the frame. An electrode support positions the electrode in the frame and includes a conductor extending through the electrode support and electrically connected to the electrode and an insulative layer located around the conductor. An electrical power supply is electrically connected to the conductor to provide electrical power to the electrode.
Abstract:
The present invention provides a cleaning device (1) for cleaning the air-ionizing part (4) of an electrode (3), said device comprising a cleaning member (5) arranged to be in physical contact with the said air-ionizing part of said electrode, the air-ionizing part of electrode and the cleaning member being arranged to slide relative to each other. The cleaning device further comprises an actuator (6, 8, 9) arranged to activate the relative motion between said air-ionizing part (4) of the electrode (3) and the cleaning member (5). There is also provided an ionization electrode comprising an air-ionizing part and the cleaning device, as well as a ultrafine particle sensor, an air ionizer or an electrostatic air cleaner comprising such an electrode.
Abstract:
Clean corona gas ionization by separating contaminant byproducts from corona generated ions includes establishing a non-ionized gas stream having a pressure and flowing in a downstream direction, establishing a plasma region of ions and contaminant byproducts in which the pressure is sufficiently lower than the pressure of the non-ionized gas stream to prevent at least a substantial portion of the byproducts from migrating into the non-ionized gas stream, and applying an electric field to the plasma region sufficient to induce at least a substantial portion of the ions to migrate into the non-ionized gas stream.
Abstract:
An air cleaner includes a negative ion generation portion generating negative ions, a positive ion generation portion generating positive ions, a drive portion adjusting a distance between the ion generation portions, a wind velocity sensor detecting wind velocity at positions where the ion generation portions are installed, and a microcomputer controlling the drive portion based on a detection result of the wind velocity sensor and setting distance D between the ion generation portions to an optimal value. Therefore, since the distance between the ion generation portions is set to the optimal value, a large amount of ion generation can be obtained.
Abstract:
To provide an apparatus for capture and inactivation of microbes and viruses, the apparatus is configured to be capable of performing stable removal of microbes and viruses and achieve a reduction in pressure loss.An apparatus 100 includes an air path housing 10, a charging-unit high-voltage electrode 2 that charges airborne microorganisms introduced in the air path housing 10, a charging-unit ground electrode 3 placed so as to face the charging-unit high-voltage electrode 2, a hydrophilic filter 6 that captures the airborne microorganisms charged by the charging-unit high-voltage electrode 2, a capturing/inactivating-unit high-voltage electrode 5 that subjects the hydrophilic filter to electrostatic induction and inactivates the captured viruses, and a capturing/inactivating-unit ground electrode 7 placed so as to face the capturing/inactivating-unit high-voltage electrode 5.