Abstract:
A method for production of a female embossing tool (6) intended for embossing a sheet element (60): provide a female embossing tool (6) with an outer layer (44) made of a material with shape-memory type properties, and the outer face of the layer has no recesses; provide a male embossing tool (5, 5′) with an outer face with at least one protuberance corresponding to at least one desired embossing relief that is to be formed on the sheet element (60) after embossing; and cooperation of the male embossing tool (5, 5′) with the female embossing tool (6) such that the outer layer (44) of the female embossing tool (6) undergoes a plastic deformation which creates at least one recess (42, 42′) of a shape complementary to the protuberance(s) (41, 41′) of the male embossing tool (5, 5′).
Abstract:
The embossing-laminating device includes load bearing structure with at least two side members, a first path, for a first ply of web material, and a second path for a second ply of web material. Along the first path, a first pressure roller and a first interchangeable embossing roller are arranged, which define therebetween a first embossing nip for the first ply of web material. Along the second path a second pressure roller and a second interchangeable embossing roller are arranged, which define a second embossing nip for the second ply of web material. The embossing-laminating device also includes a magazine including a plurality of seats for a plurality of interchangeable embossing rollers, as well as at least a first manipulator for replacing embossing rollers.
Abstract:
A flexible die is used in an embossing apparatus in which a pair of flexible bases (2a, 2b) are respectively wrapped around a pair of cylindrical rollers disposed opposing each other, and a sheet to be processed (S) is passed through between the pair of rollers, thereby performing embossing. The pair of flexible bases (2a, 2b) are constituted by a female flexible base (2a) and a male flexible base (2b) that are mated with each other, a line-shaped convex portion (3a) corresponding to the contour of an embossing processing pattern is formed in the female flexible base (2a), and the convex portion (3b) is formed in the male flexible base (2b), the convex portion (3b) being fitted within the area encompassed within the line-shaped convex portion (3a) of the female flexible base while leaving an interval from the inner circumferential surface of the line-shaped convex portion (3a). A concave portion (30) is formed in the convex portion (3b).
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.
Abstract:
A multi-layered paper product that has bridging regions for inhibiting nesting is provided. For example, the paper product can contain a first and second layer that define ridges and valleys. Bridging regions are formed into at least one of the outer surfaces of the layers. In particular, the bridging regions are positioned at an angle of between about 0° to about 180° relative to the ridges and also have a length sufficient to extend between the peaks of at least two of the ridges. The bridging regions can be formed in a variety of ways, such as with an embossing roll that contains embossing elements. Moreover, the bridging regions can also have a variety of shapes, sizes, orientations, and/or patterns.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85° to 95° from the machine direction.
Abstract:
The invention relates to a device for embossing and/or glazing films. The device for embossing includes a first and second embossing roll, through which flat material can be fed under pressure, in order to create a pattern. An additional embossing roll is connected downstream of the second embossing roll, this additional embossing roll interacting with the first or preceding embossing roll. The patterned flat material may be fed between these embossing rolls, in order to be embossed again with essentially the same pattern. In a simplified embodiment, only a total of two rolls are used. In order to achieve as precise an embossing as possible, with special effects, the first driven embossing roll is provided with teeth, while at least one other embossing roll comprises rings or longitudinal ribs, or is smooth.
Abstract:
In a guide roller for a stamping machine for deflecting a stamping foil web and/or a substrate web to be stamped upon, so that the guide roller has a negligibly low degree of friction, fixed to a roller spindle that is fixed with respect to the machine is at least one porous air-permeable spindle sleeve at which at least one roller sleeve is rotatably mounted. The roller spindle has a compressed gas passage for acting on the or each spindle sleeve with compressed gas to produce a gas cushion between the or each respective spindle sleeve and the associated roller sleeve.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.