Abstract:
A process has been developed to selectively dissociate target molecules into component products compositionally distinct from the target molecule, wherein the bonds of the target molecule do not reform because the components are no longer reactive with each other. Dissociation is affected by treating the target molecule with light at a frequency and intensity, alone or in combination with a catalyst in an amount effective to selectively break bonds within the target molecule. Dissociation does not result in re-association into the target molecule by the reverse process, and does not produce component products which have a change in oxidation number or state incorporated oxygen or other additives because the process does not proceed via a typical reduction-oxidation mechanism. This process can be used for the remediation of water, particularly ballast water.
Abstract:
UV apparatus comprises a tube of UV-transparent material, at least one UV lamp provided externally of the tube so as to emit UV light towards the tube, and a core extending in an axial direction within the tube and configured to create turbulent flow in a liquid passing through the tube. A photocatalyst is provided on at least one surface of the core and is responsive to UV light emitted by the lamp to generate free radicals in liquid passing through the tube.
Abstract:
A purification apparatus comprising a filtration unit comprising filtration screens, a disinfection unit comprising a source of disinfecting light and a passage for filtrate from the filtration unit to the disinfection unit. The filtration unit may be selected from at least one static drum, at least one rotating drum, and at least one filter pack. Louver vanes or baffles may be used in the passage to create turbulence and direct flow. A process for removing particulate matter and disinfecting a process flow comprises the steps of filtering the process flow to remove particulate matter, directing the filtrate to a source of disinfection light while creating turbulence in the filtrate and disinfecting the filtrate.
Abstract:
In overview, the described system provides a mercury-free gas discharge UVC lamp system and in particular a liquid purification system including a treatment container, a treatment volume, and one or more UVC lamps as described hereinafter configured to irradiate the treatment volume. In an embodiment of the invention, the UVC lamp system includes a tubular glass or quartz envelope, evacuated to approximately 200 Torr and slightly backfilled with a noble gas such as Xenon, Argon, or Nitrogen. For end emission, the cylindrical opening in each electrode assembly may be a through-hole capped externally by a quartz window. The radiation flux and dwell time may be adjusted to the type and degree of contamination in the water.
Abstract:
An ultraviolet irradiation system includes: an ultraviolet irradiation apparatus including a plurality of ultraviolet lamps; a flowmeter configured to measure a flow rate of the water to be treated that passes through the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of the ultraviolet lamps. The plurality of ultraviolet lamps include a first ultraviolet lamp and a plurality of second ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of the first ultraviolet lamp; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the first ultraviolet lamp and the first measurement head is set to a determined value.
Abstract:
An ultraviolet (UV) reactor for carrying out chemical reactions in a pumpable medium by means of UV. The pumpable medium may also be, where appropriate, a multi-phase medium. The UV reactor has a reactor chamber through which the medium can flow In a direction of flow from an inlet to an outlet. The reactor chamber is penetrated by a number of UV transparent jacket tubes, which are arranged one behind the other in the direction of flow. UV emitters are arranged within the jacket tubes for emitting UV radiation into the reactor chamber. The jacket tubes are arranged one behind the other and are interlocked against one another at an angle αin the circumferential direction of the reactor chamber.
Abstract:
A system and method for powering an ultraviolet (UV) water purification system utilizing a dynamo. A dynamo, operably attached to the UV water purification system, generates power from a rotatable crank which is actuated by a user around an axis of the rotatable crank. When the crank is rotated, the dynamo produces an electrical current that activates and powers the UV lamp, which in turn, produces UV light to purify the water. To ensure that the water has been purified appropriately, a microcontroller, employed within the UV water purification system, tracks both the “on” time and the intensity of the UV lamp as the dynamo is cranked. Once the lamp has been “on” at a sufficient intensity and for an appropriate period of time to administer a required dose of UV light, the microcontroller disables the lamp and provides the user with notification that the process has completed.
Abstract:
PROBLEM TO BE SOLVED: To provide a monitoring and controlling system of an ultraviolet irradiation apparatus with which the reliability of the ultraviolet irradiation apparatus can be improved and safer water can be supplied.SOLUTION: The monitoring and controlling system includes: the ultraviolet irradiation apparatus configured to discharge inflowed water to be treated after ultraviolet irradiation; a flowmeter configured to measure a flow amount of the water to be treated on an inlet side or outlet side of the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of one ultraviolet lamp among the plurality of ultraviolet lamps; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the ultraviolet lamp and the first measurement head is determined to form a predetermined relationship between a reduction equivalent ultraviolet dose and a ratio of the ultraviolet intensity measured by the first measurement head to the ultraviolet intensity measured by the first measurement head when an output control value of the first ultraviolet lamp is 100%.