Abstract:
An RF inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of HIPE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
Abstract:
A method for producing polyHIPE porous monoliths, of the polyHIPE type or in the form of a rigid foam, by hardening solutions of condensed tannins in the presence of oil and/or air or in the presence of a non-water-miscible volatile solvent and/or air. Also disclosed is the use of these materials in the areas of catalysis, chromatography, heat and sound insulation, tissue engineering and medication release and as a floral foam.
Abstract:
Polymeric foams and elastomer/hydrogel bicontinuous composite structures derived from high internal phase emulsions and possessing shape-memory characteristics are disclosed, as well as processes for forming the same and uses thereof in, for example, manufacturing of various articles.
Abstract:
Polymeric foams and elastomer/hydrogel bicontinuous composite structures derived from high internal phase emulsions and possessing shape-memory characteristics are disclosed, as well as processes for forming the same and uses thereof in, for example, manufacturing of various articles.
Abstract:
A method for continuous High Internal Phase Emulsion (HIPE) foam production. A HIPE is produced then extruded onto a belt. After polymerization, a portion of the saturated aqueous phase is removed using a vacuum box. A nip insert is inserted under the vacuum box to raise the vacuum box leading to improved uniformity of the HIPE in the cross direction along the belt.
Abstract:
An RF inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of HIPE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
Abstract:
The present invention comprises compositions and methods of making high internal phase emulsion foam (HIPE) and inverse high internal phase emulsion foam (I-HIPE) using super critical fluids. Such foams may be used in a wide variety of articles such as absorbent articles.
Abstract:
This application relates to a process for the preparation of a polymeric foam material. The process has the steps of: preparing an oil phase and water phase and mixing the phases to make a water-in-oil emulsion wherein the emulsion has a volume to weight ratio of water phase to oil phase of at least about 4:1 and from about 20% to about 80% of the final volume to weight ratio of water phase to oil phase; increasing the volume to weight ratio of water phase to oil phase in the emulsion to 100% of the final volume to weight ratio of water phase to oil phase by the mixing of additional amount of water phase with the emulsion and curing the monomer component in the oil phase of the water-in-oil emulsion using a polymerization reaction to form a saturated polymeric foam material.
Abstract:
The present invention comprises compositions and methods of making high internal phase emulsion foam (HIPE) and inverse high internal phase emulsion foam (I-HIPE) using super critical fluids. Such foams may be used in a wide variety of articles such as absorbent articles.
Abstract:
A method for dehydrating a porous cross-linked polymer conveniently to a low final water content is provided. A porous cross-linked polymer sheet is produced by a method which comprises causing a porous cross-linked polymer obtained by forming and polymerizing a water-in-oil type higher internal phase emulsion to be dehydrated by the use of non-woven fabric rolls furnished with an aspiration mechanism. Properly in this case, the porous cross-linked polymer is subjected to preliminary squeezing. In accordance with the present invention, a porous cross-linked polymer abounding in a water absorbing property to be dehydrated to a low final water content with a small number of rolls.