Abstract:
A solar power forecasting system can provide forecasts of solar power output by photovoltaic plants over multiple time frames. A first time frame may be several hours from the time of the forecast, which can allow utility personnel sufficient time to make decisions to counteract a forecasted shortfall in solar power output. For example, the utility personnel can decide to increase power production and/or to purchase additional power to make up for any forecasted shortfall in solar power output. A second time frame can be several minutes from the time of the forecast, which can allow for operations to mitigate effects of a forecasted shortfall in solar power output. Such mitigation operations can include directing an energy management system to shed noncritical loads and/or ramping down the power produced by the photovoltaic plants at a rate that is acceptable to the utility to which the photovoltaic plants provide power.
Abstract:
Método de distribución de heliostatos en planta solar de torre rodeada de un campo de heliostatos los cuales reflejan la radiación solar a dicha torre. El método distribución de dichos heliostatos consiste en imitar los sistemas que se encuentran en la naturaleza para maximizar la captación de luz (semillas de plantas, hojas o pétalos) y que viene descrito matemáticamente por espirales de Fermat en un número perteneciente a la serie de Fibonacci, mediante la colocación, en coordenadas polares, de cada heliostato según un radio y un ángulo definido por Formula (I) siendo: r n distancia desde la torre (2) hasta la posición del heliostato (3), θ n el ángulo que forman el radio r n con el radio r n-1 , n número del heliostato (3) que deseamos emplazar, C n una constante que depende de cada emplazamiento y corresponde al índice de compacidad de los heliostatos (3) en la planta, ī el límite irracional de la sección áurea, es decir. (Formula II)
Abstract:
L'invention concerne un procédé de calcul de la forme d'un concentrateur de rayonnement provenant d'au moins une source placée dans un espace de dimension 2 ou 3, ledit concentrateur étant solidaire d'un support et comportant d'une part un réflecteur du rayonnement ayant une forme réfléchissante notée FR et s'étendant dans une zone de réflexion notée ZR, et comportant d'autre part un capteur de rayonnement ayant une forme de captage notée FC et s'étendant dans une zone de captage du rayonnement notée ZC. Le procédé de calcul selon l'invention est caractérisé en ce qu'il comporte des étapes consistant à: - définir un ensemble de paramètres d'entrée représentatifs de la propagation du rayonnement entre ladite au moins une source, la zone de réflexion ZR et la zone de captage ZC; - faire varier par valeurs discrètes lesdits paramètres d'entrée pendant une période de simulation, et simuler l'émission d'un rayonnement à partir de ladite source vers le concentrateur; - pour chaque ensemble de valeurs des paramètres d'entrée correspondant à un impact sur le capteur du rayonnement simulé émis, mémoriser les paramètres d'entrée correspondants, ainsi que l'énergie de l'impact, de façon à constituer pour chaque configuration des paramètres d'entrée, un historique des impacts sur le capteur en fonction du temps; - définir une fonction des paramètres d'entrée et de sortie qui serve d'établissement d'un score représentatif de la configuration courante du réflecteur et du capteur; - optimiser numériquement lesdits paramètres d'entrée de façon à maximiser ledit score; - enregistrer la géométrie de la forme optimale FR du réflecteur, et la géométrie de la forme optimale FC du capteur, correspondant au score le plus élevé obtenu pendant la période de simulation.
Abstract:
The present invention provides a multifunctional building panel which may comprise a sensor to measure an interior condition and an exterior condition and generate a signal in response, along with systems and methods for designing, optimizing and constructing modular buildings, including buildings constructed at least in part of multifunctional building panels, by utilizing a priority distribution ranking as an optimization constraint.
Abstract:
A method of determining usable area of a structure for solar energy production may include obtaining a three-dimensional model of a structure and obstructions associated therewith, and performing a shading analysis using the obtained three-dimensional model to obtain a usable area of the structure. A method of providing solar information for a structure using a Web portal may include providing an interactive map, receiving a user selection of a structure located on the interactive map, and providing solar information for the selected structure, wherein the solar information is based at least in part on a usable area obtained by performing a shading analysis using a three-dimensional model of the structure and obstructions associated therewith. A system for providing an interactive Web portal may include a database including solar information regarding a structure, and a server configured to access the database to retrieve the solar information and provide the Web portal.
Abstract:
A method for managing distributed renewable energy systems comprising receiving first meter data for a plurality of first meters, each of the plurality of first meters associated with a renewable energy power generation component at an institution and measuring an amount of power generated by each associated renewable energy power generation component over a first period of time. Receiving second meter data for a plurality of second meters, each of the plurality of second meters associated with an institution having a renewable energy power generation component and measuring an amount of power consumed by each associated institution over a period of second time. Determining a difference between the amount of power measured by each of the first meters and the amount of power measured by a corresponding one of each of the second meters at each institution.
Abstract:
A method for controlling the orientation of a single-axis solar tracker orientable about an axis of rotation, said method repetitively completing successive control phases, where each control phase implements the following successive steps:
a) observing the cloud coverage above the solar tracker; b) comparing the observed cloud coverage with cloud coverage models stored in a database, each cloud coverage model being associated to an orientation setpoint value of the solar tracker; c) matching the observed cloud coverage with a cloud coverage model; d) servo-controlling the orientation of the solar tracker by applying the orientation setpoint value associated to said cloud coverage model retained during step c).
Abstract:
In an example, an expected sky condition is calculated for a geographic location, a time of day, and a date based on a mathematical model. A predicted distribution of direct and interreflected solar radiation within the environment is calculated based on the expected sky condition. Measurement data from one or more photosensors is obtained that provides measurements of an initial distribution of direct and interreflected radiation within the environment, including radiation from solar and electrical lighting sources. A target distribution of direct and interreflected artificial electromagnetic radiation produced by electrical lighting is determined, based on the measurement data and the predicted distribution of direct and interreflected solar radiation, to achieve the target distribution of direct and interreflected radiation within the environment. Output parameters are set to one or more devices to modify the initial distribution to achieve the target distribution of direct and interreflected radiation within the environment.
Abstract:
An apparatus and method for determining a potential surface for installation of solar panels are provided. The method includes extracting, from a database of overhead images, at least one overhead image respective of a location; identifying a surface outline of at least one surface within the at least one overhead image; determining a pattern associated with the surface outline, the pattern comprising at least a facet; determining a potential installation area for solar panels based on the at least facet; and, displaying the potential installation area overlaid on the overhead image.
Abstract:
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined “features” with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Some embodiments may provide viewing, creating, and manipulating of multiple versions of a solar collector layout design for a particular installation worksite. The use of versions may allow analysis of alternative layouts, alternative feature classifications, and cost and performance data corresponding to alternative design choices. Version summary information providing a representative comparison between versions across a number of dimensions may be provided.