Abstract:
An environmental sensing device includes an interferometric modulator which permanently actuates, in a visually-detectable manner, in response to being exposed to a predetermined environmental threshold or condition. The device can include a reactive layer, coating, or proof mass disposed on a movable member of the interferometric modulator. The reactive layer, coating, or proof mass can expand, contract, bend, or otherwise move when exposed to a predefined chemical, level of humidity, temperature threshold, type of radiation, and/or level of mechanical shock, causing the interferometric modulator to collapse and permanently indicate such exposure.
Abstract:
The invention provides a material for pressure measurement which utilizes a color forming reaction between a colorless electron-donating dye precursor and an electron-accepting compound to form color, and having a color density difference (ΔD) of 0.02 or more before and after pressurization at 0.05 MPa. When the colorless electron-donating dye precursor is included in microcapsules and the median diameter of the microcapsules on a volume basis is A μm, 5000 to 30000 microcapsules having a diameter of (A+5) μm or more are present per 2 cm×2 cm area.
Abstract:
An environmental sensing device includes an interferometric modulator which permanently actuates, in a visually-detectable manner, in response to being exposed to a predetermined environmental threshold or condition. The device can include a reactive layer, coating, or proof mass disposed on a movable member of the interferometric modulator. The reactive layer, coating, or proof mass can expand, contract, bend, or otherwise move when exposed to a predefined chemical, level of humidity, temperature threshold, type of radiation, and/or level of mechanical shock, causing the interferometric modulator to collapse and permanently indicate such exposure.
Abstract:
A waveguide sensor according to an embodiment of the present invention includes: a substrate; a first underclad arranged on one side of the substrate; a first sensing core arranged on outer side of the first underclad and having a stripe pattern which extends in one direction; a first overclad arranged on outer side of the first sensing core; a second underclad arranged on another side of the substrate; a second sensing core arranged on outer side of the second underclad and having a stripe pattern which extends in a direction not parallel to the direction in which the first sensing core extends; and a second overclad arranged on outer side of the second sensing core. A first grooved part which extends in a direction not parallel to the direction in which the first sensing core extends is formed on the first overclad, so that the first grooved part and the first sensing core together form a first grating in a plane view. Furthermore, a second grooved part which extends in a direction not parallel to the direction in which the second sensing core extends is formed on the second overclad, so that the second grooved part and the second sensing core together form a second grating in a plane view.
Abstract:
A method of measuring strain in a test specimen comprises the steps of placing a pattern of marks on a surface of the test specimen, wherein the pattern of marks includes a plurality of target marks and a plurality of sets of coded marks, using the sets of coded marks to identify locations of at least two of the target marks, and using a change in distance between at least two of the marks to determine strain in the test specimen. An apparatus that performs the method is also provided.
Abstract:
A method of measuring strain in a test specimen comprises the steps of placing a pattern of marks on a surface of the test specimen, wherein the pattern of marks includes a plurality of target marks and a plurality of sets of coded marks, using the sets of coded marks to identify locations of at least two of the target marks, and using a change in distance between at least two of the marks to determine strain in the test specimen. An apparatus that performs the method is also provided.
Abstract:
The invention relates to core-shell particles comprising a shell which forms a matrix, and a core which is essentially solid and has an essentially monodisperse size distribution, the refractive index of the core material being different from that of the shell material. The invention especially relates to the use of said particles for producing sensors for detecting mechanical forces and sensors having an optical effect, essentially consisting of core-shell particles comprising a shell which forms a matrix and a core which is essentially solid and has an essentially monodisperse size distribution, the refractive index of the core material being different from that of the shell material. The inventive particles are characterised in that at least one contrast material is stored in the matrix.
Abstract:
An evaluation method for monitoring the consequences of an impact at low speed and little force on a structural composite material part covered with a film that changes color when under pressure and whose color intensity is directly related to the force of a received shock.
Abstract:
A pressure measurement method using a pressure measuring film in which a toner layer with a definite thickness is held between an adhesive layer formed on a first support and an inactive adhesive layer formed on a second support. Prior to applying the pressure to be measured to the measuring film, the inactive adhesive layer is activated to have an adhesive property. After pressure to be measured is applied to the film, the first support is removed and the applied pressure is determined based on the amount of toner attached to the second support. Using a toner having extremely small size, an extremely low pressure applied to an extremely small contact area can be measured. Also the pressure measuring film is not affected by use conditions (temperature, humidity). The inactive adhesive layer may be formed of a thermoplastic resin adhesive which can be activated by heating to become adhesive.
Abstract:
A film is placed between contacting surfaces in an assembly. The film has an optical property responsive to pressure. A compressive force is applied to the contacting surfaces to generate an initial pressure pattern. The film is removed from between the contacting surfaces. The optical property is sensed to derive a sensed initial pressure pattern. A stored setting controls the compressive force. The sensed initial pressure pattern is compared to a reference pressure pattern. The stored setting is updated to adjust the compressive force as a function of the comparing.