Abstract:
The invention relates to a unit and method for detection of presence of oil on the water surface or in the water column. Unit comprises a sensor, whereby the sensor is connected to electronic compartment followed by microprocessor controller with embedded software for carrying out necessary analyses of reflected signals received by the sensor. The microprocessor controller is connected to communication means for transmitting an alarm signal through external communication line in case of oil pollution. All elements mentioned above are supplied by external power supply and are accommodated into a waterproof housing. The sensor comprises the probe light source formed by a pulsed UV LED, collimating optics and narrow band optical filter, at least one dichroic mirror, a projection-receiving lens, at least one optical filter, at least one photodetector and a reference photodetector.
Abstract:
A grain measurement device (76) comprises a chamber (80) having an inlet (82) and an outlet (84) for grain that is to be tested. A spectrometer is equipped with a light source (89) and a detector (91) for light which was generated by the light source (89) and was transmitted through the sample. The detector (91) is connected to an analyzer (134) for wavelength-resolved analysis of the received light. A mounting (93) of one of the light source (89) or detector (91) can be moved with respect to the other (91, 89 by a drive (106), which moves the mounting (93) for purposes of conveying the sample either in the flow direction (130) or in the opposite direction, in order to break up the sample or to avoid bridging and/or jamming of the sample in the measurement chamber (80).
Abstract:
A gas detection device with at least one functional device (1), which is fixed to a platform, is pivotable about at least two pivot axes (2, 3) relative to the platform. The functional device (1) is designed to emit and/or receive or reflect radiation that is analyzably variable due to the presence of a gas to be detected. The gas detection device has an adjusting device (9), which has a fixing device for temporary fixation to the platform and an application device for the defined application on the functional device (1) of forces that lead to a pivoting about the pivot axes (2, 3). The application device acts detachably on the functional device (1).
Abstract:
The invention relates to a device (1) for FTIR absorption spectroscopy, having an ATR sensor (5) and at least one ultrasonic transmitter (10) for generating an ultrasonic field in the manner of a standing wave. The ATR sensor (5) and the ultrasonic transmitter (10) are connected to a mounting (4) which is provided for attachment in a wall (2) or cover of a reactor (3) and which is set up to hold the ATR sensor (5) and the ultrasonic transmitter (10) so that they freely project into the interior of the reactor (3) in the mounted state.
Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
A sample investigation system (ES) in functional combination with an alignment system (AS), and methodology of enabling calibration and very fast, (eg. seconds), sample height, angle-of-incidence and plane-of-incidence adjustments, with application in mapping ellipsometer or the like systems.
Abstract:
A monitoring device by laser shadowscopy, which comprises a light emitter (5) and receiver (6), mounted on an arm (8) oscillating at will around two joints (13, 14), in order to restore the image of the monitored profile more accurately.An important application relates to welding methods and especially in hollow beveled edges.
Abstract:
A method of inspecting a lateral pipe extending from a manhole, said method comprising: (a) inserting an imaging head into said manhole using a positioning system, said imaging head connected to an elongated member and comprising an imaging device adapted to convert an image to an image signal, a lens optically coupled to said imaging device, and at least one lamp suitable for projecting a light beam, said lamp having a beam that is adjustable to enable said beam to move relative said imaging device; (b) imaging a target located within said lateral pipe; (c) holding said imaging device essentially steady while imaging said target and adjusting said beam to adjust the illumination of said target.
Abstract:
A sensor unit is for use in a surface plasmon resonance (SPR) assay apparatus having an assay stage. A total reflection prism is supported on a stage surface of the assay stage, and has a sensing surface positioned on an upper surface thereof. The sensing surface receives illuminating light applied thereto to reflect the illuminating light. The assay apparatus receives the illuminating light reflected by the sensing surface, for measuring reaction of a sample. Two engageable ridges are disposed on first and second lateral faces of the prism which are so positioned that the sensing surface is disposed between, and keep the prism positioned on the stage surface by engagement with a retention mechanism of the assay apparatus. Furthermore, a grip portion is formed at a first end of the prism, and adapted to holding of the prism.