Abstract:
An electronic device for controlling a remote electronic device is described. The electronic device includes a processor and instructions stored in memory that is in electronic communication with the processor. The electronic device enters a control state that is not a power off state and is not a power on state. The electronic device also generates a control message for a remote electronic device while in the control state. The electronic device further transmits the control message for controlling the remote electronic device while in the control state.
Abstract:
A wireless control device (1) comprises an antenna (5) and a power harvester (2) to generate power for the device from a radio frequency signal (7) incident on the antenna. The device further comprises an upconverter stage; the upconverter stage comprising a first port (21) to receive a control signal (13) to be upconverted and a second port (34) to receive the incident radio frequency signal (7) and to output the upconverted control signal at upper and lower sideband frequencies (8). The antenna is coupled to the second port.
Abstract:
Systems and methods of extending battery life in inventory control devices are disclosed. A passive receiver configured to wirelessly receive an initiation signal having an associated energy field from a remote control system and to output a mode change signal is provided. The passive receiver is configured to be powered by an energy field associated with the initiation signal. A functional module coupled to the passive receiver and configured to be powered by a self-contained power source when the functional module is in an active mode is provided. The functional module is further configured to receive the mode change signal from the passive receiver and to change from an inactive mode to the active mode. The functional module draws more power from the power source in the active mode than in the inactive mode.
Abstract:
The invention describes a method of actuating a switch (S) between a device (Di) to be controlled and a power supply (P), which method comprises the steps of generating a first electrical signal (14) in a remote control unit (10) and converting the first electrical signal (14) into electromagnetic radiation (EM) by means of a first transmitting antenna (Ti) of the remote control unit (10). A first detecting antenna (Ri) of a remote control interface module (20) of the device (Di) to be controlled detects the electromagnetic radiation (EM) to obtain a second electrical signal (24), which is passively converted into a switch actuating signal (25). The switch actuating signal (25) is actuated to switch the device (Di) to be controlled between an operating mode in which current is drawn from the power supply (P) by the device (Di) during operation, and an inactive mode in which the device (Di) is completely disconnected from the power supply (P) so that no current is drawn by the device (Di). The invention further describes a system (1) for actuating a switch (S) between a device (Di) to be controlled and a power supply (P). The invention also describes a remote control interface module (20) and a remote control unit (10).
Abstract:
A light energy and electrical remote controller includes a shell (1), a signal transmitter, a central processor, an electrical circuit board, keys (2) and sun energy charged batteries which are connected electrically and supply direct current voltage to the signal transmitter, the central processor and the electrical circuit board.
Abstract:
System comprising at least one master unit (25) and a plurality of slave units (10, 16, 20, 21, 22, 23), wherein said master unit and said slave units comprise means for performing communication via radio frequency channels. The at least one master unit comprises means for transmitting control signals to said slave units, and the slave units are each provided with a unique address and are each associated with a controllable device. The at least one master unit comprises means for executing a sequential transmission of control signals to at least one of said slave units upon activation of a function control key.
Abstract:
Various embodiments are directed to use of RF and WiFi control in a fan device to control fan status and speed and/or fan light on/off status and intensity. A customer premises includes a WiFi router through which WiFi communications can be sent from a WiFi capable device, e.g., a cell phone, to control the fan device and its various functions. While WiFi control is via a WiFi router in the home, the control signals normally do not traverse the Internet or another external network. In addition to WiFi control, control of the fan device can be via an RF control device, e.g., a wall mounted controller. In some embodiments, the fan device reports its state and/or changes in state due to received commands to a server, and the server generates a recommended normal control schedule and an away control schedule and then uses the schedules to control fan device.
Abstract:
A remote control device my comprise a control unit and a mounting structure (e.g., a smart mounting structure) to which the control unit is configured to be mounted. The control unit may be configured to operate in a plurality of operating modes. The control unit may transmit a first message for controlling a first electrical load when the control unit is operating in a first operating mode and a second message for controlling a second electrical load when the control unit is operating in a second operating mode. When the control unit is mounted to the mounting unit, the mounting unit may transmit a third message to the first control circuit of the control unit in response to receiving a user input received via an input circuit of the control unit. The control unit may change between the plurality of operating modes in response to receiving the third message.
Abstract:
Various embodiments are directed to use of RF and WiFi control in a fan device to control fan status and speed and/or fan light on/off status and intensity. A customer premises includes a WiFi router through which WiFi communications can be sent from a WiFi capable device, e.g., a cell phone, to control the fan device and its various functions. While WiFi control is via a WiFi router in the home, the control signals normally do not traverse the Internet or another external network. In addition to WiFi control, control of the fan device can be via an RF control device, e.g., a wall mounted controller. In some embodiments, the fan device reports its state and/or changes in state due to received commands to a server, and the server generates a recommended normal control schedule and an away control schedule and then uses the schedules to control fan device.