Abstract:
본 발명은 인쇄회로기판상에 구비된 다수의 탄소접점부를 접지하는 메탈돔을 가압하기 위한 접지돌기와, 상기 접지돌기의 대향면에 구비되어 접지돌기를 가압하는 버튼을 포함하여 구성되는 키패드 러버에 있어서, 상기 접지돌기의 선단에는 본체의 탄소접점부를 접지하는 메탈돔을 일체로 형성하여 종래와 같이 메탈돔을 인쇄회로기판상에 부착하기 위한 별도의 접착시트 사용을 방지하여 재료비용의 절감을 기대할 수 있을 뿐만 아니라, 키패드 어셈블리의 조립과정중 발생되는 편심과 불량을 해소할 수 있게 되는 등의 효과를 제공한다.
Abstract:
A rotary switch with a knob having an axis of rotation and moveable to a plurality of angular positions and an elongated member extending in a longitudinal direction relative to the axis of the knob. A conductive member is positioned near a plurality of angularly displaced traces formed on a Printed Circuit Board. When the knob is rotated, the rotation is translated to longitudinal movement of the conductive member, which contacts at least one trace to close a circuit.
Abstract:
A switch of nonmetallic macromolecular conductive material being water-resistant and resistant to oxidation includes a circuit board having electronic circuitry and a plurality of electrical contact assemblies on a top surface; and a plurality of elastic members mounted on the circuit board and each including a bottom opening, and a stem on a bottom of a top extending downward toward the bottom opening. Each electrical contact assembly is surrounded by the elastic member and the circuit board. An electrically conductive member made of nonmetallic macromolecular conductive material is formed on a bottom of the stem. An electrical contact made of nonmetallic macromolecular conductive material is formed on each electrical contact assembly. A process of manufacturing same is also included.
Abstract:
A switch contact element, having a layered structure comprising three layers: the bottom layer is silicone rubber, the middle layer is a continuous base metal sheet layer, and the upper layer is a discontinuous (stripe-shaped, raised-point-shaped or lattice-shaped) precious metal plated layer or a double-metal composite layer of a discontinuous base metal plated layer and a precious metal plated layer. The thickness of the bottom layer is greater than that of the middle layer, the thickness of the middle layer is greater than that of the upper layer, and the thickness of the upper layer meets the conditions that the conductive current is greater than safe current of conductive contacts on a circuit board, and the service life of a switch for the design is ensured.
Abstract:
A touch panel includes multiple belt-like lower electrodes formed on a light transparent base sheet and multiple belt-like upper electrodes placed away from the lower electrodes with a predetermined distance therebetween and in a direction crossing with the lower electrodes at right angles. The lower and upper electrodes are made of light transmissive and electrically conductive resin, so that they can be formed in a simple way such as printing. The foregoing structure thus allows obtaining the touch panel manufactured in a simple way at a lower cost.
Abstract:
Switches and devices suitable for use in soft articles such as textiles are provided, which can be used to create integrated soft component systems. According to one embodiment, a conductor carrier (2) containing two parallel electrically conductive tracks (1) is disposed adjacent to a flexible contact maker (4). The flexible contact maker (4) comprises an electrically conductive substrate. One of the electrically conductive tracks of the conductor carrier (2) is permanently attached to the flexible contact maker (4) at a contact point (6). The other electrically conductive track has a contact point (3). In an open configuration, the flexible contact maker (4) does not make electrical contact with the contact point (3). In a closed configuration, the contact maker does make contact with the contact point (3) and closes the circuit between the two electrically conductive tracks. The flexible contact maker may be resiliently biased in either or both of the open and closed configurations.
Abstract:
A touch screen comprising: a) a substrate; b) a first conductive layer located on the substrate; c) a flexible sheet comprising a substantially planar surface and integral compressible spacer dots formed thereon, each integral compressible spacer dot having a base closest to the substantially planar surface and a peak furthest from the substantially planar surface; and d) a second conductive layer located on the substantially planar surface of the flexible sheet, the peaks of the integral compressible spacer dots extending beyond the second conductive layer located on the substantially planar surface; wherein the first and second conductive layers are positioned towards each other and separated by the integral compressible spacer dots. Undercuts are formed around each integral compressible spacer dot, and the second conductive layer is electrically isolated from any conductive layer material deposited on the peaks of the spacer dots while depositing the conductive layer material on the substantially planar surface.
Abstract:
A pressure actuated switching device is made by applying at least a first layer of fluid conductive polymeric coating material to a surface of a sheet of green rubber material. The conductive polymeric coating is solidified to form an electrode, and the sheet of green rubber material is vulcanized. Two strips of green rubber may be simultaneously processed and then joined such that the respective layers of conductive coating are in spaced apart opposing relationship. The conductive polymeric coating may optionally be formulated with green rubber. Optionally, a blowing agent may be included in the conductive coating formulation so as to provide a cellular polymeric foam piezoresistive material from which the electrode is constructed. The green rubber sheets may be processed by a continuous rotary method or by a linear method using a clamping press having opening and closing dies for heating and joining the strips of green rubber.
Abstract:
There is provided a flexible, lightweight high-performance proportional input interface (10) cooperative with a textile garment or upholstery as well as with any of a variety of different electronics (50) without compromising the comfort and/or durability of the textile (1). The proportional input interface (10) has one or more areas of a conductive elastomeric material (20) that cooperate with an actuator (30) to translate and/or communicate intuitive user input proportionally to the one or more areas of conductive elastomeric material (20) such that the user input can be converted and/or altered into a signal suitable for accomplishing one more complicated functions and/or operations associated with various electronic devices and/or systems (50).
Abstract:
Key actuators and other switching devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.