Abstract:
An apparatus for controlling a synchronous generator having a converter. A voltage detector detects a terminal voltage of a stator of the synchronous generator. A current detector detects a current flowing through the stator. A rotor position estimating part estimates a rotor position of the synchronous generator from the detected voltage and current. An active power detector detects an active power of the synchronous generator. A reactive power detector detects a reactive power of the synchronous generator or a terminal voltage detector detects an effective value of a terminal voltage of the stator. An active power controller adjusts a q-axis current command to control the active power, and a reactive power controller or terminal voltage controller adjusts a d-axis current command to control the reactive power or terminal voltage.
Abstract:
This invention relates to an apparatus for driving an ac motor that includes a current controlled type power converter which produces an ac current or power having an arbitrary frequency at its output, a first switch provided to connect the power converter and the ac motor, and a second switch provided to connect an independent ac power supply and the ac motor. The apparatus operates in two switching modes, namely, switching from the ac power supply to the power converter and switching from the power converter to the ac power supply. To perform such a switching operation smoothly, the apparatus of the invention a voltage phase detector circuit for detecting the voltage phase of the ac power supply, detector circuit for detecting a value proportional to the power factor of the ac motor, a holding circuit for holding the value proportional to the power factor for a predetermined time, a current phase detector for detecting the current phase of the ac motor on the basis of the voltage phase of the ac power supply and the value proportional to the power factor, and a switching circuit for causing the first and second switches to be operative in synchronism with the phase detection signal.
Abstract:
In a method and apparatus for controlling a speed of an AC motor energized by a source of alternating current through a frequency converter, a limiter responsive to input voltage and input current is provided for decreasing a primary frequency at a rate faster than a rate of decrease in a number of revolutions of the motor when the source is interrupted for a short interval and for accelerating the motor with a primary current thereof limited to a predetermined value while maintaining the primary frequency and the primary current in a predetermined relation.
Abstract:
A frequency converter applies a variable voltage with a variable frequency to an AC motor coupled with a load. At least one frequency region is set up for the variable frequency. The ratio of a percentage input voltage expressed in terms of a percentage of the rated input voltage of the AC motor, to a corresponding percentage input frequency expressed in terms of a percentage of the rated input frequency of the AC motor, is set less than 1 within the frequency region thus set. Also an apparatus for the AC motor control provided.
Abstract:
The invention relates to a DC control circuit for controlling the speed and rotary direction of a three-phase asynchronous motor. The circuit has an inverter section having three branches with a pair of switch elements in series in each of the branches. The inverter section has a common extinguishing switch element in shunt with the three branches. A speed determining frequency generator is responsive to the voltage of the DC supply and an ignition signal generator for operating the inverter switch elements is driven by the frequency generator. An extinction signal generator for operating the common extinguishing switch element is also driven by the frequency generator. A reversing circuit section between the ignition signal generator and the inverter branches has two states for exchanging the control lines of the inverter switch elements in at least two of the branches. A latching unit for selecting either of the two reversing states is connected to and subservient to the frequency generator to prevent initiations of reversals prior to the operation of the extinguishing switch element during each cycle of operation.
Abstract:
An induction motor is operated by a power supply of variable voltage and variable frequency. The voltage and frequency of the variable-voltage variable-frequency power supply is changed by a control circuit to accelerate or decelerate the induction motor. For slowly controlling the speed of the induction motor, the ratio of the output voltage to the output frequency of the variable-voltage variable-frequency power supply is maintained substantially constant. The control circuit includes a voltage correcting means which, in response to a command for sudden acceleration or deceleration of the speed of the motor, corrects the output voltage of the power supply in accordance with the acceleration or deceleration rate and the prevailing magnitude of the output frequency of the variable-voltage variable-frequency power supply.
Abstract:
A low cost, solid-state variable input voltage inverter recharges each commutating capacitor through an impedance and a controllable semiconductor switch, preferably a resistor and a transistor in series with a commutating capacitor, to the value of a source of fixed or predetermined voltage to assure reliable commutation over the entire range of input voltage control. The inverter is constructed in single and multiphase versions and is especially suited for industrial applications such as a wide range variable speed AC motor drive.
Abstract:
AN OSCILLATOR APPLIES TIMING SIGNALS TO AN INVERTER LOGIC ARRANGEMENT FOR GOVERNING THE FREQUENCY OF THE INVERTER OUTPUT A-C VOLTAGE SUPPLIED TO A MOTOR. THE AMPLITUDE OF THE A-C VOLTAGE APPLIED TO THE MOTOR IS ADJUSTED BY SUITABLE CONTROL MEANS WHICH RECEIVES A REGULATING SIGNAL FROM A COMPARATOR. A FIRST SIGNAL CHANNEL INCLUDES A FEEDBACK NETWORK, AND APPLIES TO THE COMPARATOR A FIRST CONTROL SIGNAL WHICH INDICATES THE EFFECTIVE AMPLITUDE OF THE INVERTER VOLTAGE. A SECOND SIGNAL CHANNEL IS CONNECTED BETWEEN THE OSCILLATOR AND THE COMPARATOR TO PROVIDE A SECOND CONTROL SIGNAL RELATED TO THE FREQUENCY OF THE OSCILLATOR OUTPUT. THE COMPARATOR OUTPUT SIGNAL IS A FUNCTION OF BOTH AMPLITUDE AND FREQUENCY, AND DRIVES THE CONTROL MEANS TO MAIN A PRESET RATIO BETWEEN AMPLITUDE AND FREQUENCY OF THE A-C VOLTAGE PASSED TO THE MOTOR.
Abstract:
A method of controlling a full-scale converter system in which both the grid-side inverter unit and the generator-side inverter unit have a series-connection of parallel inverters and form a generator-side and grid-side voltage-center-point at a voltage level between the inverters connected in series. The voltage-center-points are electrically connected by a center-line conductor. Conversion operation with a de-rated maximum active power-output is performed in response to at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the first converter-string being disabled, by disabling active power production of at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the second converter-string, or correspondingly reducing active power production of the second converter-string, thereby preventing a compensation current along the center-line conductor.