Abstract:
In one disclosed embodiment, a mobile unit receives an assigned reverse supplemental channel data rate, for example, as part of a supplemental channel assignment from a base station to the mobile unit in a cdma spread spectrum communication system. The mobile unit utilizes a profiling table to determine a maximum feasible reverse supplemental channel data rate corresponding to a given forward supplemental channel data rate. For example, the profiling table can be constructed by testing the mobile unit to determine what combinations of forward and reverse supplemental channel data rates and operating conditions cause the mobile unit's processor to “crash”. The mobile unit communicates data over the reverse supplemental channel at a data rate which does not exceed the maximum feasible reverse supplemental channel data rate, for example, by constructing service data units using filler to lower the communication data rate below the maximum feasible reverse supplemental channel data rate.
Abstract:
A plurality of communication signals is received. Each communication signal has an associated code. At least two of the communication signals has a different spreading factor. The associated codes have a scrambling code period. A total system response matrix has blocks. Each block has one dimension of a length M and another dimension of a length based on in part M and the spreading factor of each communication. M is based on the scrambling code period. Data of the received plurality of communication signals is received using the constructed system response matrix.
Abstract:
A method of detecting a transmission rate in a wireless communication terminal employing a Code Division Multiple Access (CDMA) scheme, comprising the steps of: decoding and encoding, at a selected transmission rate, a frame signal corresponding to a data frame currently received by a de-interleaver from a modulator-demodulator (modem) in response to the reception of the data frame; comparing the encoded frame signal with the current frame signal being received from the modulator-demodulator, and as a comparison result, determining whether there are errors in an amount less than a predetermined threshold value; transmitting a signal indicative of the selected transmission rate to a vocoder if there are errors in an amount less than the predetermined threshold value, and determining whether the reception of all data frames is complete; returning to the encoding and decoding step if the reception of all data frames is not complete; and, selecting another transmission rates other than the previously selected transmission rate used to decode and encode the current frame signal if there are errors in an amount greater than the predetermined threshold value, then returning to the encoding and decoding step.
Abstract:
A radio transmission system is configured to, on the occasion of radio transmission of information between a transmitter and a receiver, perform the radio transmission of information using an orthogonal frequency and code division multiplexing transmission scheme of parallelly transmitting identical information by a plurality of sub-carriers. The radio transmission system has a spreading factor variable control transmitting device for parallelly converting information channel-coded at the transmitter, according to symbols transmitted simultaneously, and for spreading a sequence of parallelized symbols in at least one of a frequency direction and a time direction by a spreading code sequence of a designated spreading factor.
Abstract:
A spread spectrum mobile station receives a multichannel data communication signal. The multichannel data communication signal has multiple data channels at independent data rates on a same frequency spectrum. Selected channels of data of the received signal are separated and the data rate for each channel identified. Each separated channel is decoded at an assigned data rate. A common decoding memory is shared.
Abstract:
A decoder decodes a plurality of received convolutionally encoded date signals simultaneously. At least two of the encoded data signals have a different data rate. The decoder receives undecoded I and Q symbols from the plurality of encoded data signals and outputs Euclidian distances corresponding to each encoded signal. Each data signal's distances are mapped on to a trellis. To output decoded symbols of each data signal, decisions are traced back in each data signal's trellis.
Abstract:
In a synchronous fixed frame boundary system with variable data rates, a transmitter inserts into a current frame an indication of the data rate of the next frame. After the first frame is received and processed at a receiver, the variable data rates of subsequent frames are known before processing, thereby reducing processing load. Furthermore, because the rate indication is inserted into the frame to be error protected along with the rest of the frame information, reliability is high, while additional data overhead and complexity are very low. For example, North American code division multiple access (CDMA) digital cellular telephone systems and personal communication system (PCS) utilize variable data rate transmissions. As a station modem (SM) assembles a current frame for convolutional encoding and further processing, the SM inserts a rate indication for the subsequent frame in accordance with information from a vocoder and CPU of the appropriate data rate for the subsequent frame. On the receiving end, rather than needing to decode multiple times to determine the appropriate data rate for every frame, the receiving SM discovers the rate of each frame by analyzing the information contained in the immediately preceding frame. The rate determination process also includes a verification method to ensure accurate data rate determination.
Abstract:
A variable rate transmission method that can vary the transmission rate of data. A transmitting side supplies a transmitted data sequence to an error detecting encoder 105 and a frame memory 103. The frame memory 103 stores data of a variable length to be transmitted in one frame. The error detecting encoder 105 calculates an error detecting code (such as CRC code) for each frame of the transmitted data. A multiplexer 104 adds the calculated error detecting code ahead of the transmitted data to place it at the initial position of the frame, and sequentially outputs the data sequence frame by frame. A receiving side calculates an error detecting code of the data in each transmitted frame in the same manner as the transmitting side, and compares the calculated error detecting code with the error detecting code at the initial position of the frame. The end bit of the frame data is decided as a position at which the two error detecting codes coincide. This makes it possible to transmit variable length data without informing the receiving side of the data length in each frame. This is equivalent that the transmission rate can be varied freely.
Abstract:
A terminal and a method therefor in which only one digital signal processor DSP is utilized, thereby decoding receive data and encoding transmit data in a code division multiple access cellular communication system. The terminal according to the present invention comprises: a DSP for executing a program which includes a sub-routine for determining receive data bit rate, and encoding data to be transmitted according to a transmit data rate; a controller for controlling encoding and decoding operations of the DSP; a modulator for modulating data encoded by the DSP; a demodulator for demodulating receive data, thereby to input the demodulated data to the DSP; a speech encoder for encoding speech information to be transmitted, thereby to input the encoded speech information to the controller; and a speech decoder for restoring data decoded by the DSP.
Abstract:
In a synchronous fixed frame boundary system with variable data rates, a transmitter inserts into a current frame an indication of the data rate of the next frame. After the first frame is received and processed at a receiver, the data rates of subsequent frames are known before processing, thereby reducing processing load. Furthermore, because the rate indication is inserted into the frame to be error protected along with the rest of the frame information, reliability is high, while additional data overhead and complexity are very low. As an example, North American code division multiple access digital cellular telephone systems utilize variable data rate transmissions. As a station modem (SM) assembles a current frame for convolutional encoding and further processing, the SM inserts a rate indication for the subsequent frame in accordance with information from a vocoder and CPU of the appropriate data rate for the subsequent frame. On the receiving end, rather than needing to decode multiple times to determine the appropriate data rate for every frame, the receiving SM discovers the rate of each frame subsequent to the first frame by analyzing the information contained in the immediately preceding frame. The rate determination process also includes a verification method based upon a frame quality indicator analysis and a symbol error rate analysis to ensure accurate data rate determination.