Abstract:
An optical scanning system and method for laser engraving a plurality of data subrasters into a substrate to form a raster of engraved data defining an image on the substrate. Each subraster has a length dimension and a width dimension. The system includes a transport assembly having an objective lens and a mirror, the mirror capable of reflecting a substantially collimated scanning beam incident thereon in a direction transverse to an axis of the incident beam such that it is directed to the objective lens. The objective lens is capable of focusing the scanning beam on the substrate to engrave a set of data in the width dimension of the subraster and the objective lens and mirror combination is capable of moving along the axis of the incident beam to allow subsequent engraving of other sets of data in the width dimension until a complete subraster is formed along its length dimension. The objective lens and mirror combination is also capable of returning to its starting position to begin engraving of a subsequent subraster of the plurality of subrasters forming the raster of engraved data. A thermoset plastic substrate and a substrate having a an inorganic ceramic material are also identified as being suitable for use in a printing process, and particularly suitable for use with the aforementioned system and method.
Abstract:
A combination automatic document feeder and scanner operates so as to detect automatically an over-sized sheet of media. A linear image sensor detects motion of the oversized document as it is being fed into the scanner in a portrait orientation. A control algorithm responsive to the image sensor functions so those first and second portions of the over-sized sheet are successively registered over the transparent platen of the scanner and scanned. The resulting digital images of the first and second portions of the oversized sheet are digitally stitched together using a control algorithm that causes 1) a front portion of the oversized document to be advanced a sufficient distance in a forward direction to place the front portion inside the scanning area of the line scanner but not a sufficient distance to place the rear portion of the oversized document inside the scanning area of the line scanner; 2) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the front portion of the oversized document; 3) the line scanner to move to a target area below the front portion of the oversized document for capturing a line of indicia information disposed on the front portion of the oversized document; 4) the front portion of the oversized document to advance in a direction perpendicular to the motion of the line scanner in a series of predetermined exposure intervals to determine the distance the oversized document traveled into the scanning area of the line scanner; 5) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the rear portion of the oversized document; 6) the front portion indicia information to be combined with the rear portion indicia information without any substantial discontinuity between the two portions; and 7) a complete image of the over-sized sheet to be stored in a memory, faxed or printed.
Abstract:
This invention is directed toward a system and method for scanning a scene or object such as a whiteboard, paper document or similar item. More specifically, the invention is directed toward a system and method for obtaining a high-resolution image of a whiteboard or other object with a low-resolution camera. The system and method of the invention captures either a set of snapshots with overlap or a continuous video sequence, and then stitches them automatically into a single high-resolution image. The stitched image can finally be exported to other image processing systems and methods for further enhancement.
Abstract:
A combination automatic document feeder and scanner operates so as to detect automatically an over-sized sheet of media. A linear image sensor detects motion of the oversized document as it is being fed into the scanner in a portrait orientation. A control algorithm responsive to the image sensor functions so those first and second portions of the over-sized sheet are successively registered over the transparent platen of the scanner and scanned. The resulting digital images of the first and second portions of the over-sized sheet are digitally stitched together using a control algorithm that causes 1) a front portion of the oversized document to be advanced a sufficient distance in a forward direction to place the front portion inside the scanning area of the line scanner but not a sufficient distance to place the rear portion of the oversized document inside the scanning area of the line scanner; 2) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the front portion of the oversized document; 3) the line scanner to move to a target area below the front portion of the oversized document for capturing a line of indicia information disposed on the front portion of the oversized document; 4) the front portion of the oversized document to advance in a direction perpendicular to the motion of the line scanner in a series of predetermined exposure intervals to determine the distance the oversized document traveled into the scanning area of the line scanner; 5) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the rear portion of the oversized document; 6) the front portion indicia information to be combined with the rear portion indicia information without any substantial discontinuity a memory, faxed or printed.
Abstract:
A method is described for exposing both sides of a light sensitive sheet such as a printed circuit board panel according to imaging data. The method uses a device that has an optical system for scanning the sensitive sheet by one or more beams. The optical system scans both sides with the scan lines on one side mutually positioned with respect to the scan lines on the other side. According to one implementation, the optical system includes two optical scanning units driven by a single source, with a switch alternating the beam from the source to one then the other optical scanning unit.
Abstract:
A device is described for exposing both sides of a light sensitive sheet such as a printed circuit board panel according to imaging data. The device comprises an optical system for scanning the sensitive sheet by one or more beams. The optical system scans both sides with the scan lines on one side mutually positioned with respect to the scan lines on the other side. According to one implementation, the optical system includes two optical scanning units driven by a single source, with a switch alternating the beam from the source to one then the other optical scanning unit.
Abstract:
The image recording method and apparatus deflect light from a group of two-dimensionally disposed light source elements to move an image formed on a recording medium in accordance with a movement of the recording medium, or shift modulation data of the group of two-dimensionally disposed light source elements in a first moving direction of the recording medium on the group of two-dimensionally disposed light source elements in synchronism with the movement of the recording medium, and thereby have the image remain stationary relatively to the recording medium in the main scanning direction, as well as shift sequentially modulation data of the group of two-dimensionally disposed light source elements in a direction opposite to a second moving direction of the optical system in synchronism with a movement of the optical system in the auxiliary scanning direction, and thereby having the image also remain stationary relatively to the recording medium in the auxiliary scanning direction.
Abstract:
An apparatus and method for controlling an image recording device. The apparatus includes an acousto-optic deflector that deflects a beam of light so as to write a sub-scan comprising a predetermined number of picture elements. The image recording device is arranged to write a plurality of sub-scans side by side in a substantially contiguous manner. The apparatus also includes a component that commences sub-scans, a start of sub-scan detector that detects when the light beam is directed towards a start of sub-scan position, and an end of sub-scan detector that detects when the beam of light is directed towards an end of sub-scan position. A timing logic controller generates a start reference signal representing a desired position for the start of a sub-scan. A controller compares an output of the start of sub-scan detector with respect to the start reference signal. The controller also adjusts a frequency range of a chirp applied to the acousto-optic deflector while keeping a start time of the chirp constant so as to cause an arrival time of the light beam at the start of sub-scan detector to coincide with the start reference signal. A picture element rate controller adjusts a rate at which picture elements are written such that a final one of the picture elements is written a predetermined period before the light beam is directed towards the end of sub-scan position.
Abstract:
A multi-lenses optical device with high resolution is provided for converting an optical image into electronic signals. The multi-lenses optical device includes a focusing unit for focusing a plurality of sections of the optical image to correspondingly generate a plurality of focused image sections with the same ratio and having the same optical path length, a photoelectric conversion unit for converting the plurality of focused image sections into the electronic signals, a switching unit for sequentially having each one of the focused image sections or the optical image sections selected and having the selected image section transmitted to the photoelectric conversion unit, and a light-reflecting unit mounted between the photoelectric conversion unit and the focusing units for transmitting the plurality of image sections.
Abstract:
A cascade scanning optical system which includes a plurality of laser scanning optical systems each emitting a laser beam to scan a surface of a member, and a beam splitter positioned in an optical path between the plurality of laser scanning optical systems and the member such that a first laser beam which has passed through the beam splitter and a second laser beam which has been reflected by the beam splitter proceed to the surface on a common line thereon in respective ranges of the common line. Each of the plurality of laser scanning optical systems is desinged as a telecentric system.