Abstract:
Data estimation is performed in a wireless communication system using both oversampling and multiple reception antennas. A receive vector is produced for each antenna at a sampling interval which is a multiple of the chip rate of the received signal. A channel response matrix is produced for each antenna at a preferred multiple of the sampling rate. Each receive vector is processed using a sliding window based approach, where a plurality of successive windows are processed. For each window, a combined circulant channel response matrix is produced using the channel response matrices. Using the combined circulant channel response matrix and a combined received vector comprising each received vector in a discrete Fourier transform based approach to estimate a data vector corresponding to that window; and combining the data vector estimated in each window to form a combined data vector.
Abstract:
A load simulator includes an indicator, a first resistor, and a second resistor. A first terminal of the indicator is connected to a first pin of a charger, while a second terminal of the indicator is grounded. The indicator and the first resistor are connected in parallel. Two terminals of the second resistor are connected to a second pin of the charger and ground, respectively.
Abstract:
A receiver or an integrated circuit (IC) incorporated therein includes a fast Fourier transform (FFT)-based (or hybrid FFT-based) sliding window block level equalizer (BLE) for generating equalized samples. The BLE includes a noise power estimator, first and second channel estimators, an FFT-based chip level equalizer (CLEQ) and a channel monitor unit. The noise power estimator generates a noise power estimate based on two diverse sample data streams. The channel estimators generate respective channel estimates based on the sample data streams. The channel monitor unit generates a first channel monitor signal including truncated channel estimate vectors based on the channel estimates, and a second channel monitor signal which indicates an approximate rate of change of the truncated channel estimate vectors. The FFT-based CLEQ generates the equalized samples based on the noise power estimate, one-block samples of the first and second sample data streams, the channel estimates and the monitor signals.
Abstract:
A method and system for transmitting messages over an F-SCCH in wireless communication field are disclosed. The method includes the following steps: acquiring a transmission type according to a negotiation between a terminal and a network during a link initialization; configuring a bit number occupied by a message type of messages of the F-SCCH; communicating, by the network, messages with the terminal according to the configured bit number of the message type based on the determined transmission type. With the present invention, redundancy of channel configuration may be decreased, channel configuration of the conventional art is simplified, hence reducing resource occupancy and improving resource utilization of channels.
Abstract:
In a method and device for correcting distortion in MRI, k-space data are acquired in a number of data readout directions, the data are converted into a number of images, and a corresponding pixel shift map is generated for each image. The geometric distortion in the corresponding image is corrected according to the pixel shift map, and then all geometric distortion-corrected images are combined. Since movement distortion normally exists in the data readout direction, collecting the k-space data from a number of data readout directions can effectively correct movement distortion. Moreover, correcting the geometric distortion for the images converted from data acquired in a number of data readout directions according to the pixel shift map can reduce the geometric distortion of the final image generated from combination of images. The method and device correct not only movement distortion of MRI images, but also geometric distortion of MRI images.
Abstract:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Abstract:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Abstract:
This invention provides methods and kits for performing a quantitative amplification reaction. The method employs a polymerase enzyme and an enzyme having a 3′ to 5′ exonuclease activity that cleaves the 3′ oligonucleotide of the probe.
Abstract:
In a method and apparatus for accelerating MR temperature imaging used in MR-monitored high intensity focused ultrasound (HIFU) therapy, temperature changes are determined at the focus of the ultrasound during MR temperature imaging; determining the ideal acceleration rate needed for data sampling according to the temperature changes at said focus is determined, the variable-density (VD) data sampling in k-space is adjusted according to the determined ideal acceleration rate, and the data obtained from sampling are reconstructed to form an image. The capability of accelerating MR temperature imaging with both good temporal resolution and good spatial resolution is improved by determining the acceleration rate according to temperature changes at the ultrasound focus and by adjusting the VD data sampling of k-space and thereby the benefits of good flexibility, feasibility and stability are achieved.
Abstract:
A sliding window based data estimation is performed. An error is introduced in the data estimation due to the communication model modeling the relationship between the transmitted and received signals. To compensate for an error in the estimated data, the data that was estimated in a previous sliding window step or terms that would otherwise be truncated as noise are used. These techniques allow for the data to be truncated prior to further processing reducing the data of the window.