Abstract:
A "bolt on" static separator is disclosed for use in conjunction with a rotating separator to handle higher liquid volumes that are not able to be effectively separated by the rotating separator alone. The static separator may be positioned upstream of the rotating separator, generally right in front of the rotating separator, i.e., immediately ahead of the inlet to the rotating separator and generally attached directly to the front end of the rotary separator. The static separator may include a significant change in flow path direction that is sufficient to cause coarse fluid separation. The output of the static separator is in communication with the input of the rotating separator. Additionally, the drain of the static separator is in communication with the drain of the rotating separator and is at the same pressure.
Abstract:
A system for powering a compressor. The system may include a power generation unit adapted to generate AC power. An electric motor may be coupled to the power generation unit and adapted to turn at a rate proportionate to a frequency of the AC power. A compressor may be coupled to the electric motor, and an output pressure of the compressor may be directly dependent on the rate that the electric motor turns. A control system may be coupled to the power generation unit and to the compressor, and the control system may be adapted to vary the frequency of the AC power generated by the power generation unit, thereby varying the output pressure of the compressor.
Abstract:
A casing assembly for a compressor where traditional inlet and discharge nozzles are replaced with a mounting surface created from weld filler material applied to the outside surface of a casing. The weld filler material, and a portion of the outside surface of the casing, are cooperatively milled to create a generally planar or flat surface having a casing conduit centrally-disposed therein. A flange may then be coupled to the flat surface for the inlet or discharge of a process gas.
Abstract:
A system and method according to which exhaust is directed from a stationary exhaust source and through a burner, and a combustible fluid is vented from at least one combustible fluid source other than the stationary exhaust source. The combustible fluid is captured and directed to flow from the combustible fluid source and towards the burner, and at least air is mixed with the captured combustible fluid to form a mixture. The mixture is introduced into the burner and burned therein to thereby pre-heat the exhaust flowing therethrough. The pre-heated exhaust contacts a catalyst.
Abstract:
A compression system, apparatus, and method. The compression apparatus includes a motor, a lubricant source, an umbilical, a compressor, a separation device, and a lubricant recycling assembly. The lubricant source provides lubricant. The umbilical is connected to the lubricant source. The compressor is operatively connected to the motor, fluidly connected to the umbilical, and includes a compressor lubricant outlet and a compressor lubricant inlet that is fluidly connected to the umbilical. The separation device is fluidly connected to the compressor, the lubricant source, and a well including a process fluid, wherein the separation device separates the process fluid into a substantially liquid portion and a substantially gaseous portion, and a portion of the lubricant mixes with the process fluid. The lubricant recycling assembly includes a dirty side connected to the compressor lubricant outlet, a clean side connected to the compressor lubricant inlet, a lubricant filter, and a lubricant pump.
Abstract:
An auxiliary bearing system for a magnetically supported rotor system according to which the auxiliary bearing system includes at least two mounting pad assemblies having compliantly mounted body members.
Abstract:
An auxiliary bearing system having a sleeve through which a shaft extends. A gap may be defined between the sleeve and the shaft when a primary bearing system supports the shaft, and the sleeve may engage and rotate with the shaft when the primary bearing system does not support the shaft. An oil ring may extend circumferentially around the sleeve and rotate in response to the rotating sleeve when the sleeve engages and rotates with the shaft. The rotating oil ring may distribute lubricant within the auxiliary bearing system.
Abstract:
A system and method for capturing emissions including a first vent configured to capture a first combustible fluid and an inlet configured to filter a noncombustible, wherein the combustible fluid and the noncombustible fluid are combined to form a diluted stream. A first valve may be in fluid communication with the first vent and the inlet, and the first valve may be configured to receive and control flow of the diluted stream. An engine may be in fluid communication with the first valve and configured to receive and combust the diluted stream.
Abstract:
A method and system for reducing corrosion in a turbomachine. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
Abstract:
A device or system through which fluid is adapted to flow, such as, for example, a fluid- carrying conduit, flow control valve, or fluid expansion device including, for example, a steam turbine or fluid expander, according to which acoustic energy is generated by, or present within, the device or system and the acoustic energy is attenuated.