Abstract:
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
Abstract:
A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
Abstract:
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
Abstract:
A tele-presence system that includes a remote device coupled to a control station through a communication link. The remote device includes a remote monitor, a remote camera, a remote speaker and a remote microphone. Likewise, the control station includes a station monitor, a station camera, a station speaker and a station microphone. The control station displays a plurality of graphical icons that each represents a different type of communication link between the control station and the remote device. The graphical icons can be selected to allow a user of the control station to change the communication link between the remote device and its initial node.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. The visualization and management system for telepresence devices may display a first viewing level that includes a geographical representation of the location of various telepresence devices. A user may selectively view a global view of all telepresence devices, telepresence devices within a particular region, and/or the details of a particular telepresence device. A user may also access a viewing level of a network of healthcare facilities. The user may view, analyze, and/or manage the healthcare network, telepresence device network, individual telepresence devices, connection rules, and/or other aspects of the healthcare network using the geographical visualization and management tool described herein.
Abstract:
A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point in a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.