Abstract:
A process for the production of hydrogen cyanide comprises feeding a reaction mixture feed to a plurality of primary reactors each comprising a catalyst bed comprising platinum, wherein the reaction mixture feed comprises gaseous ammonia, methane, and oxygen gas, determining whether a percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below a threshold, identifying one or more suboptimal reactors amongst the plurality of primary reactors when the percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below the threshold, and supplementally feeding the reaction mixture feed to one or more supplementary reactors when the one or more suboptimal reactors are identified, wherein each of the one or more supplementary reactors comprises a catalyst bed comprising platinum. The supplemental feeding can be performed in place of the feeding of the reaction mixture feed to the one or more suboptimal reactors or in addition to the feeding of the reaction mixture feed to the one or more suboptimal reactors. The overall process is sufficient to maintain an overall measured hydrogen cyanide production rate amongst the one or more supplementary reactors and the primary reactors that is within a desired overall hydrogen cyanide production rate range.
Abstract:
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate.
Abstract:
This document describes biochemical pathways for producing 6-hydroxyhexanoate methyl ester and hexanoic acid hexyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase and a monooxygenase, as well as recombinant hosts expressing one or more of such enzymes. 6-hydroxyhexanoate methyl esters and hexanoic acid hexyl ester can be enzymatically converted to adipic acid, adipate semialdehyde, 6-aminohexanoate, 6-hydroxyhexanoate, hexamethylenediamine, and 1,6-hexanediol.
Abstract:
This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
Abstract:
This document describes biochemical pathways for producing 2-aminopimelate from 2,6-diaminopimelate, and methods for converting 2-aminopimelate to one or more of adipic acid, adipate semialdehyde, caprolactam, 6-aminohexanoic acid, 6-hexanoic acid, hexamethylenediamine, or 1,6-hexanediol by decarboxylating 2-aminopimelate into a six carbon chain aliphatic backbone and enzymatically forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in the backbone.
Abstract:
A novel mixture composition comprising various aliphatic dicarboxylic acids is provided. Further, a composition comprising the aliphatic dicarboxylic acid mixture composition, water and at least one water-soluble organic amine is provided. Further, a method for inhibiting corrosion of metal surfaces comprising contacting the metal with the composition comprising the aliphatic dicarboxylic acid mixture composition as above, water and at least one water-soluble organic amine is provided.
Abstract:
Disclosed is a process for the separation of water from a liquid phase medium containing an aliphatic carboxylic acid using azeotropic distillation in the presence of an entrainer. The entrainer, water, and organics are subsequently separated, wherein the entrainer is recycled back to the azeotropic distillation column and organics recycled back to the oxidation reactor.
Abstract:
Briefly described, embodiments of the present disclosure include trilobal bulked continuous filaments (BCFs) with a generally round central void, spinneret plates with a capillary design for producing the BCFs of the present disclosure, articles and carpets produced from the BCFs of the present disclosure, methods of producing the trilobal BCFs of the present disclosure, and the like.
Abstract:
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6; backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
Abstract:
A polyamide comprising a nylon and a polyetheramine. The polyetheramine can have a molecular weight of at least 1500 an Amine Hydrogen Equivalent Weight (AHEW) of less than 10 percent higher than the idealized AHEW for the polyetheramine. The polyamide may have a moisture regain ranging from about 10% to about 30%.