Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102) positioned on and partly located in the wiping tank (101) to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100) comprises a supporting mechanism (200) coupled to the wiping roller assembly (102) and designed to move the wiping roller assembly (102) between a working position where the wiping roller assembly (102) is positioned on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a maintenance position where the wiping roller assembly (102) is moved out of the wiping tank (101) and away from the intaglio printing cylinder (80). Preferably, the wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the intaglio printing cylinder (80).
Abstract:
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a moveable sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
Abstract:
A device for irradiating substrate material (S) in the form of a sheet or web in a sheet-fed or web-fed processing system, especially in a sheet-fed or web-fed processing or printing press. The device comprises at least one flexible light-emitting sheet (10) for producing radiation of a desired wavelength or wavelength band, which light-emitting sheet (10) is disposed along a path of the substrate material (S) to subject the substrate material (S) to said radiation. The flexible light-emitting sheet (10) is preferably an organic light-emitting device (OLED) sheet.
Abstract:
There is described an intaglio printing press comprising (i) a stationary machine frame (01 ) supporting an intaglio printing cylinder (07) and an impression cylinder (06) contacting the intaglio printing cylinder (07), and (ii) an inking system (12, 13, 16) for inking the intaglio printing cylinder (07), which inking system (12, 13, 16) comprises an ink-collecting cylinder (12) designed to contact the intaglio printing cylinder (07) and at least one inking device (13, 16) for supplying ink to said ink-collecting cylinder (12). The intaglio printing press further comprises a driving system (110; 115; 116) for rotating the ink-collecting cylinder (12) independently of the intaglio printing cylinder (07) and the impression cylinder (06) at least during maintenance operations.
Abstract:
There is described an intaglio printing press comprising (i) a stationary machine frame (01 ) supporting an intaglio printing cylinder (07) and an impression cylinder (06) contacting the intaglio printing cylinder (07), (ii) an inking system (12, 13, 16) for inking the intaglio printing cylinder (07), which inking system (12, 13, 16) comprises an ink-collecting cylinder (12) designed to contact the intaglio printing cylinder (07) and at least one inking device (13, 16) for supplying ink to said ink-collecting cylinder (12), and (iii) at least a first mobile carriage (1 1 ) supporting the ink-collecting cylinder (12), which first mobile carriage (1 1 ) is adapted to be moved with respect to the stationary machine frame (01 ) between a working position where the ink-collecting cylinder (12) contacts the intaglio printing cylinder (07) and a retracted position where the ink-collecting cylinder (12) is retracted away from the intaglio printing cylinder (07). The intaglio printing press further comprises a correcting and adjusting system (80) for correcting and adjusting a rotational position of the ink-collecting cylinder (12) with respect to a rotational position of the intaglio printing cylinder (07) following maintenance operations to ensure proper circumferential register between the ink-collecting cylinder (12) and the intaglio printing cylinder (07) in the working position of the first mobile carriage (1 1 ).
Abstract:
There is described a method for checking the authenticity of security documents, in particular banknotes, wherein authentic security documents comprise security features (41-49; 30; 10; 51, 52) printed, applied or otherwise provided on the security documents, which security features comprise characteristic visual features intrinsic to the processes used for producing the security documents. The method comprises the step of digitally processing a sample image of at least one region of interest (R. o. I.) of the surface of a candidate document to be authenticated, which region of interest encompasses at least part of the security features, the digital processing including performing a decomposition of the sample image by means of wavelet transform (WT) of the sample image. Such decomposition of the sample image is based on a wavelet packet transform (WPT) of the sample image, preferably a so-called two-dimensional shift invariant WPT (2D-SIWPT)
Abstract:
There is described a security element (EL) or document (BN), such as a banknote, comprising (i) a substrate (S) with first and second sides (I, II) and exhibiting at least one window region (W) made of a substantially transparent material, (ii) a micro-optical structure (OP) provided on the first side (I) of the substrate (S) and extending over at least a part of the window region (W), and (iii) a printed feature (P1-P3) printed on the second side (II) of the substrate (S) over at least a part of the window region (W), the printed feature (P1-P3) being provided in register with the micro-optical structure (OP) to produce an optically-variable effect (EF) upon looking at the printed feature (P1-P3) from the first side (I) of the substrate (S) through the micro-optical structure (OP) and the window region (W). The security element (EL) or document (BN) further comprises a protective layer (L) acting as printable primer layer and provided on the second side (II) of the substrate (S) over the window region (W) and on top of the printed feature (P1-P3), which protective layer (L) covers the printed feature (P1-P3) when seen from the second side (II) of the substrate (S) and further acts as a contrast-enhancing layer for the optically- variable effect (EF).
Abstract:
There is described a sheet-fed printing press (1000; 1000*) comprising at least two printing units (200; 200.1, 200.2; 200.1 *, 200.2*) located one after the other, each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) being adapted to carry out simultaneous recto- verso printing of the sheets (S) and including two printing cylinders (105, 106) cooperating with one another and forming a printing nip, the two printing cylinders (105, 106) each collecting ink patterns from at least two associated plate cylinders (15A, 15B, 16A, 16B) wherein the two printing cylinders (105, 106) are located one above the other such that the sheets (S) travel laterally through each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) from a first lateral side (201 a; 201 a*) located upstream of the printing nip to a second lateral side (201 b; 201 b*) located downstream of the printing nip, wherein a number of at least two sheet transfer elements (110, 120, 95) is provided downstream of the printing nip of a first one (200.1; 200.1 *) and upstream of the printing nip of a second one (200.2; 200.2*) of the at least two printing units (200.1, 200.2; 200.1 *, 200.2*) to transfer the sheets (S).
Abstract:
There is described a recto-verso printing press (100*) adapted to carry out simultaneous recto-verso printing of sheets, the printing press (100*) comprising a main printing group (5, 6, 15, 16, 25, 26) with first and second printing cylinders (5, 6) cooperating with one another to form a first printing nip between the first and second printing cylinders (5, 6) where first and second sides of sheets are simultaneously printed, the first printing cylinder (5) acting as a sheet conveying cylinder of the main printing group (5, 6, 15, 16, 25, 26). The printing press (100*) further comprises an additional printing group (7, 8, 17, 18, 27, 28) with third and fourth printing cylinders (7, 8) cooperating with one another to form a second printing nip between the third and fourth printing cylinders (7, 8) where the first and second sides of the sheets are simultaneously printed, the third printing cylinder (7) acting as a sheet conveying cylinder of the additional printing group (7, 8, 17, 18, 27, 28). The main printing group (5, 6, 15, 16, 25, 26) and the additional printing group (7, 8, 7, 18, 27, 28) are coupled to one another by means of an intermediate sheet conveying system comprising one or more sheet-transfer cylinders (10, 10', 10'') interposed between the first and third printing cylinders (5, 7).
Abstract:
There is described a multicolour letterpress printing press, in particular a numbering press, comprising a printing group (50) with at least a first letterpress (e.g. numbering) cylinder (51) and a second letterpress cylinder (52) which are inked by an associated inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b). The inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b) comprises (i) a first inking device (81) supplying ink to a first chablon cylinder (71), (ii) at least a second inking device (82) supplying ink to a second chablon cylinder (72), and (iii) an ink-collecting cylinder (60) contacting the first and second chablon cylinders (71, 72) and the first and second letterpress cylinders (51, 52). The ink-collecting cylinder (60) collects a first ink pattern (A, D) from the first chablon cylinder (71) and a second ink pattern (B, C) from the second chablon cylinder (72). As a result, a first multicolour pattern of inks (A-D) is formed on the ink-collecting cylinder (60), which first multicolour pattern of inks (A-D) is transferred onto the first letterpress cylinder (51). The ink- collecting cylinder (60) further collects a third ink pattern (A, D ) from the first chablon cylinder (71) and a fourth ink pattern (B, C ) from the second chablon cylinder (72), thereby forming a second multicolour pattern of inks (A "D ) on the ink-collecting cylinder (60), which second multicolour pattern of inks (A "D ) is transferred onto the second letterpress cylinder (52).