Abstract:
A system for simplifying the programmable memory-to-logic interface in field programmable gate arrays (FPGAs) is provided. An interface may be used to isolate the general purpose routing architecture for intra-programmable logic blocks (PLBs) from the random access memory (RAM) address lines, data lines, and control lines. The PLBs and the input-output resources of the FPGA access the embedded memory (or RAM) using dedicated direct interconnects. Certain of these direct interconnects may originate from PLBs in the vicinity of the RAM. The remainder run between the input-output (IO) pads/routing and the RAM blocks. A bus routing architecture is also provided to combine the memories to emulate larger RAM blocks. This bus routing provides interconnection among RAM blocks and is isolated from the PLB routing resources.
Abstract:
A system for relatively rapidly configuring reconfigurable devices with a plurality of latches is provided. The number of clock cycles for loading the configuration data may be reduced by a substantial amount, and the fidelity of data loaded into the configuration latches may be relatively high. The invention also incorporates procedures for configuring multiple reconfigurable devices, which are similar to daisy chaining techniques.
Abstract:
An image plane includes a plurality of pixels. Each pixel comprises a photodiode and two transistors, and each pixel is connected by a signal bus to a respective storage node located off the image plane. Each storage node comprises two capacitors and associated switches. One of the transistors applies a reset pulse to the pixel, and the other transistor connects the pixel to a given conductor of the signal bus, which is then connected to the storage node. The pixel transistors can be operated simultaneously, and the sensed values can subsequently be transferred from the storage nodes sequentially.
Abstract:
A programmable logic device may include a programmable interconnect structure and a plurality of configurable logic elements including data latches interconnected by the interconnect structure. At least one of the configurable logic elements may be configurable as both a shift register and a lookup table. Also, the shift register may be enabled to operate as a bi-directional shift register by the inclusion of a first circuit for configuring the data latches either as series-connected inverters during a shift operation or as data latches after each shift operation. A second circuit for selecting a direction of shifting may also be included, as well as a third circuit for supplying data to the input of the shift register as determined by the direction of shifting.
Abstract:
A digital clock generator circuit with built-in frequency and duty cycle control may include a pulse generator for generating a start pulse. The pulse generator may be connected to a ring oscillator to generate multiple signals having a specified frequency and programmable duty cycles. The oscillator may further be connected to a multiplexer which selectively connects one output of the ring oscillator to a final output to produce a signal of the specified frequency and specified duty cycle. The duty cycle may be adjustable over a wide range and across the full frequency band of operation.
Abstract:
A method of forming a device, the method including: depositing a first photoresist layer over a substrate, forming an array of seed lenses by patterning and reflowing the first photoresist layer, a dimension of the array of seed lenses varying across the substrate, forming a second photoresist layer over the array of seed lenses, and forming a microlens array by patterning and reflowing the second photoresist layer.
Abstract:
Disclosed herein is a microelectromechanical (MEMS) device, including a rotor and a first piezoelectric actuator mechanically coupled to the rotor. The first piezoelectric actuator is electrically coupled between a first signal node and a common voltage node. A second piezoelectric actuator is mechanically coupled to the rotor, and is electrically coupled between a second signal node and the common voltage node. Control circuitry includes a drive circuit configured to drive the first and second piezoelectric actuators, a sense circuit configured to process sense signals generated by the first and second pizeoelectric actuators, and a multiplexing circuit. The multiplexing circuit is configured to alternate between connecting the drive circuit to the first piezoelectric actuator while connecting the sense circuit to the second piezoelectric actuator, and connecting the drive circuit to the second piezoelectric actuator while connecting the sense circuit to the first piezoelectric actuator.
Abstract:
A die including a first contact with a first shape (e.g., ring-shaped) and a second contact with a second shape (e.g., cylindrical shaped) different from the first shape. The first contact has an opening that extends through a central region of a surface of the first contact. A first solder portion is coupled to the surface of the first contact and the first solder portion has the first shape. A second solder portion is coupled to a surface of the second contact and the second solder portion has the second shape. The first solder portion and the second solder portion both have respective points furthest away from a substrate of the die. These respective points of the first solder portion and the second solder portion are co-planar with each other such that a standoff height of the die remains consistent when coupled to a PCB or an electronic component.
Abstract:
The present disclosure is directed to a package, such as a wafer level chip scale package (WLCSP), with a die coupled to a central portion of a transparent substrate. The transparent substrate includes a central portion having and a peripheral portion surrounding the central portion. The package includes a conductive layer coupled to a contact of the die within the package that extends from the transparent substrate to an active surface of the package. The active surface is utilized to mount the package within an electronic device or to a printed circuit board (PCB) accordingly. The package includes a first insulating layer separating the die from the conductive layer, and a second insulating layer on the conductive layer.
Abstract:
A scanning laser projector includes an optical module and projection engine. The optical module includes a laser generator outputting a laser beam, and a movable mirror scanning the laser beam across an exit window defined through the housing in a scanning pattern wider than the exit window such that the laser beam is directed through the exit window in a projection pattern that is smaller than and within the scanning pattern. A first light detector is positioned about a periphery of the exit window such that as the movable mirror scans the laser beam in the scan pattern, at a point in the scan pattern where the laser beam is scanned across an interior of the housing and not through the exit window, the laser beam impinges upon the first light detector. The projection engine adjusts driving of the movable mirror based upon output from the first light detector.