Abstract:
The present invention relates to a biosensor capable of measuring the total concentration of one or a plurality of amino acids with the use of a reagentless system comprising an electrode modified by hydrogel that comprises at least one enzyme that oxidizes at least one substrate that is at least one amino acid. In some embodiments, the biosensor comprises a hydrogel comprising alginate. In some embodiments, the biosensor comprises use of a thermophilic bacterial metabolic enzyme immobilized or attached to the hydrogel.
Abstract:
Various systems and methods may benefit from determination of environmental signatures in recordings. For example, such signatures may aid forensic analysis and alignment of media recordings, such as alignment of audio or video recordings. A method can include reading data representative of sensed light in a visual track of a video recording. The method can also include extracting an electric network frequency signal from the data representative of sensed light.
Abstract:
A layer-by-layer deposition process for a thin film having a polyelectrolyte and a complementary species includes calibrating a buffered polyelectrolyte solution and a buffered rinse solution, depositing a polyelectrolyte layer on a substrate, and depositing a complementary species layer on the polyelectrolyte layer. Depositing a polyelectrolyte layer includes applying the buffered polyelectrolyte solution to the substrate and applying the buffered rinse solution to the substrate after the buffered polyelectrolyte solution has been applied. Depositing a complementary species layer includes applying a complementary species mixture to the substrate and applying a complementary species rinse solution to the substrate after the complementary species mixture has been applied.
Abstract:
A hemostatic putty for treatment of a variety of wounds topographies, including but not limited to highly three dimensional wounds, for example gunshot wounds and impalements, is disclosed. The putty is comprised of a matrix polymer weakly crosslinked or not crosslinked such that a viscoelastic matrix is formed. The viscoelastic nature of the putty is tunable by the composition and enables the putty to conform to a variety of wound topographies. Likewise, a hemostatic polymer, for example chitosan or hydrophobically modified chitosan, is included in this matrix to impart hemostatic properties and tissue adhesive on the putty. The hemostatic polymers disclosed prevent microbial infection and are suitable for oxygen transfer required during normal wound metabolism.
Abstract:
Various devices may benefit from determinations of how users are using the devices. For example, hand-held or hand-operated devices may benefit from handedness detection and from modifications based on or related to such detection. A method can include determining a used hand of a user of a device. The method can also include modifying a graphical user interface of the device based on the determined used hand, wherein determination of the used hand occurs prior to any querying of the user regarding the used hand of the user.
Abstract:
An actuator for moving an ultrasound transducer has a main body configured to be positioned adjacent to a target region of interest to be examined; and, a motor mounted on the main body. The motor is configured to have an ultrasound transducer connected thereto to simultaneously translate and rotate the ultrasound transducer to perform a compound scan of the target region of interest when the ultrasound transducer is connected to the motor. An ultrasound device has an ultrasound transducer movably mounted on the actuator. The actuator requires only single motor to effect both translation and rotation of the transducer thereby simplifying operation and providing a more compact device.
Abstract:
A formulation for coating surfaces, for example gloves, with a tacky film comprises a hydrophobically modified biopolymer, where the hydrophobic modifications of the biopolymer correspond to between 1 and 90% of available functional groups, a plasticizer, and a volatile solvent. The formulation quickly dries into a tacky film that provides an enhanced friction of the surface.
Abstract:
Aspects of the present disclosure generally relate to compounds for targeting and healing bone fractures. Some of these compounds include a negatively charged oligopeptide comprising an acidic oligopeptide, a linker, which may be hydrolyzable or may be a substrate for the protease cathepsin K, and at least one molecule that promotes bone healing. In some compounds the molecule that promotes bone healing is an anabolic compound that inhibits GSK3β, in some compounds the molecule that promotes the healing of bone fracture is a pro-inflammatory agent such as PGE1. Other embodiments include methods of treating a bone fracture comprising administering a therapeutic amount of any one of the compounds disclosed herein.
Abstract:
A self-locking brake mechanism, which utilises a cantilever to engage a brake drum to prevent the brake drum from rotating, thereby resulting in braking behaviour. Further, locking mechanisms are provided that are useful for applications involving multiple brakes. The locking mechanism, through suitable use of indexing via Geneva mechanisms, allows multiple brakes to be engaged and/or disengaged from a single point of adjustment. The multiple brakes may be engaged or disengaged in a variety of combinations to achieve a particular desired braking configuration. The user can turn a single knob to engage or disengage varying combinations of brakes so as to achieve the desired braking configuration.
Abstract:
A computer-implemented method for combining two 3-dimensional ultrasound images of a patient's body part containing blood vessels into a single 3-dimensional ultrasound image of that body part with a greater field of view. Blood vessels within the body part are used for registration. The two ultrasound images are preprocessed using a vessel enhancement algorithm to derive two corresponding enhanced images. The enhanced images can undergo a registration process based upon minimizing a mean-square-difference metric to derive an enhanced rigid transform, which represents a transform that maps the first enhanced image onto the second enhanced image. The two enhanced images are seamlessly combined via a blending process (via the use of a distance transform based weighting of the voxel values) to derive an output image.