Abstract:
PURPOSE: A remote controller, a method and an apparatus for controlling an input interface are provided to enable a user to conveniently input a Hangul, English, number and symbol character through a keypad. CONSTITUTION: An input keypad(1100) combines two keys among a number key, an asteroid key, a sharp key, a directional key and a special character key. The input keypad selects one of input among the Hangul, English and number characters and symbol, and a control unit(1200) recognizes a key operation through the input keypad. The control unit process a key signal corresponding to the recognized key operation, and a wireless transmission unit(1400) transmits the key signal processed in the control unit.
Abstract:
PURPOSE: A rejection apparatus and a method of a garbage and anti-word model base in voice recognition are provided to effectively reject various operating noise or an unenrolled word by implementing a rejection process about a recognized word. CONSTITUTION: An extracting unit(104) extracts a feature vector from a voice signal. A searcher(110) gives a score through a pattern matching about the feature vector and outputs a recognition result. A rejection network generator(114) generates 'the rejection network for a rejection evaluation' through the recognition result. A rejection searcher(124) outputs a recognition score of 'word model comprising the rejection network' based on a garbage sound model. A decision logic unit(128) decides the rejection about the recognized word comparing with the recognition scores.
Abstract:
PURPOSE: A home network service method using a ubiquitous intelligent robot for offering a service for a location of a user and a robot for the coordinate information are provided to no need to use a remote controller by supplying robot performing voice input through a location sensor. CONSTITUTION: User interface information is inputted through a ubiquitous intelligent robot. The inputted user interface information is transmitted to the ubiquitous intelligent robot server(S300, S302). The ubiquitous intelligent robot server refers to the multimedia device having the multimedia information corresponding to the user interface information from a home network device group(S304). If the multimedia device is detected, the information search result user interface information is outputted through the ubiquitous intelligent robot.
Abstract:
PURPOSE: A multiple recognition candidate formation apparatus and a method thereof are provided, which can improve the efficiency of the voice recognition engine by reducing the usage amount of a memory unit and search time for creating the multiple recognition candidate. CONSTITUTION: A voice feature extractor(502) creates the feature vector through the voice recognition about the consecutive numbers voice. A search unit(504) creates the single recognition candidate string through the pattern recognition about the feature vector. The search unit outputs the likelihood point and feature vector about discrete numerical sound composed of the single recognition candidate string. A multiple recognition candidate generation part(508) creates the multiple recognition candidate by referring the order by numerical sound of the confidence measure generator(506) and the pre-set confusion matrix.
Abstract:
본 발명은 부대역의 불확실성 정보를 이용한 잡음환경에서의 음성 인식 방법 및 장치에 관한 것으로, 잡음 신호 모델링을 통해 얻어진 추정 음성에서 각 부대역별로 추정 음성의 불확실성 정보를 추출하여 이를 각 부대역에 대한 가중치로 이용하여 잡음에 강한 음성 특징을 추출하고, 상기 각 부대역 가중치에 따라 음향 모델을 변환하여 변환된 음향 모델과 상기 추출된 음성 특징을 기반으로 음성 인식을 수행함으로써, 시간에 따른 잡음 모델링이 정확하지 않더라도 부대역의 불확실성 정보에 따라 불확실성이 높은 부대역의 영향을 줄여 잡음환경에서도 음성 인식 성능을 향상시킬 수 있는 것을 특징으로 한다.
Abstract:
A vocabulary decoding method and an apparatus thereof are provided to shorten overall performance time of voice recognition without deteriorating voice recognition performance. Based on an inputted voice signal, length of a phoneme series which is outputted by decoding phonemes is detected. Based on the detected length of the phoneme series, recognition target words(202) similar to the length of the phoneme series are selected. Edition distance measurement with the phoneme series is carried out on the basis of the selected recognition target words. Through the edition distance measurement, at least one recognition target word having a minimum edition distance with the phoneme series is outputted.
Abstract:
A voice recognition method is provided to model various textual language phenomenons into statistical modeling among various knowledge sources. A morpheme is interpreted for a primitive text language corpus consisting of the separate words of Korean(S201). A morpheme language corpus separated is a separate word generated to morpheme. A word trigram which is the language model consisting of a morpheme unigram about a generated morpheme language corpus as described above, and bigram and trigrams is generated(S202). A first N - best recognition candidate to the maximum N is generated for a voice(S204). Recognition result candidates applying a morph-syntactic constraints are revaluated(S205). A second N-best list generated in above step is revaluated(S206). A final N-best list is generated.
Abstract:
본 발명은 잡음 음성을 수신하는 단계, 수신된 잡음 음성에서 잡음 구간을 추출하는 단계, 추출된 잡음 구간 및 미리 저장된 잡음 모델에 상응하여 잡음을 식별하는 단계, 식별된 잡음에 상응하여 잡음을 추정하는 단계 및 추정된 잡음 및 미리 저장된 음성 모델에 상응하여 순수 음성을 추정하는 단계를 포함하는 잡음 보상 기법에 의한 순수 음성 추정 방법을 제공한다. 음성 인식, 잡음 모델, 잡음 식별
Abstract:
본 발명은 잡음 환경에서의 음성 인식을 위한 음성 신호의 특징 벡터 추출 장치 및 상기 장치에 적용되는 역상관 필터링 방법에 관한 것이다. 본 발명에 따른 음성 신호의 특징 벡터 추출 장치는 특징 벡터를 추출할 때 잡음으로 인한 영향을 최소화하기 위하여 로그 필터뱅크 에너지에 대해 역상관 필터링을 수행함으로써 음성 신호에 비해 비교적 느린 변화 성분을 갖는 잡음과 화자의 고유 성분을 제거할 수 있다. 이렇게 함으로써, 잡음 환경에서의 불특정 화자를 대상으로 하는 화자독립 음성인식 시스템에서 잡음 및 화자 변이의 영향을 줄여서 인식 성능을 향상시킬 수 있다. 따라서, 본 발명은 잡음 처리 외에 화자독립 음성인식 시스템의 인식 성능을 향상시키는 이점도 얻을 수 있다.
Abstract:
PURPOSE: A tree search based method for recognizing a voice and a high capacity voice recognition system for continuously recognizing voices using the same are provided to improve recognition rate by excepting words having low probability from a search target. CONSTITUTION: A voice signal inputted through a voice input part(100) is inputted to a feature extracting part(200), so that the feature extracting part extracts feature parameters and provides the feature parameters to a voice recognizing part(300). The voice recognizing part decides the corresponding word by assigning the input features into a sound model and a language model. The firstly inputted features are applied to a tree-based searching part(320) through a K delay(310). The tree-based searching part searches for a word line coinciding with an input voice to be recognized by using the sound model and the language model. A language model look-ahead processing part(340) reads a learned language model for calculating expectations by routes representing probability of succeeding the preceding word and removes routes having low expectations.