Abstract:
The invention relates to fluid flow paths and fluid connectors for use with detachable containers that can be seated in an infusate caddy for use in a dialysis machine. The detachable containers can contain infusates or other solutes or materials such as disinfectants or cleaners, and can be conveniently seated in the infusate caddy. The detachable containers can be removed from the infusate caddy for restocking, cleaning, or resupply, as needed. The infusate caddy can be positioned or seated in a receiving compartment of a dialysis machine, and can also be removed, as needed. The fluid path and fluid connectors of the present invention provide the required fluid fittings, valve arrangements, pumps, and paddle assemblies for using the infusate caddy.
Abstract:
Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer or module of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include a fluid source containing at least one recharging fluid, wherein the fluid source is fluidly connectable to at least one rechargeable sorbent module for use in sorbent dialysis in a fluid flow path. The methods and apparatuses include passing a single solution through the zirconium phosphate for ion exchanges, resulting in zirconium phosphate to maintain a substantially consistent pH in a dialysate used during dialysis.
Abstract:
A medical monitoring device for monitoring electrical signals from the body of a subject is described. The medical monitoring device monitors electrical signals originating from a cardiac cycle of the subject and associates each cardiac cycle with a time index. The medical monitoring device applies a forward computational procedure to generate a risk score indicative of hyperkalemia, hypokalemia or arrhythmia of the subject. The medical monitoring device can adjust the forward computational procedure based upon clinical data obtained from the subject.
Abstract:
Effective treatments of pain and/or inflammation are provided that utilize a reversible phase transition material of a drug depot. When heat, cold or another suitable form of energy, e.g., ultrasound energy is applied to the reversible phase transition material, the release of an analgesic and/or anti-inflammatory agent from a drug depot is increased.
Abstract:
Flowable pharmaceutical depots are described. The flowable pharmaceutical depot includes a polyester, such as a polylactic acid or a poly(trimethylene carbonate) endcapped with a primary alcohol and a pain relieving therapeutic agent, such as a post operative pain relieving therapeutic agent. Method of making and using the same are also described.
Abstract:
Flowable pharmaceutical depots are described. The flowable pharmaceutical depot includes a polyester, such as a polylactic acid or a poly(trimethylene carbonate) endcapped with a primary alcohol and a pain relieving therapeutic agent, such as a post operative pain relieving therapeutic agent. Method of making and using the same are also described.
Abstract:
Effective methods for treating pain are provided. Through the injection of liquid formulation comprising an active ingredient followed by the administration of drug depot comprising an active ingredient at or near a target site, one can effectively treat pain. This methodology is particularly effective to treat acute radicular pain.
Abstract:
Methods of modifying polyurethanes using surface treated clay are disclosed herein. Such methods can be useful for controlling the surface concentration of one or more additives in the polyurethane, which can be useful for fabricating medical devices therefrom.
Abstract:
Methods and devices for point of care determination of heparin concentration in blood. Cartridges (54) including protamine ion sensitive electrodes (ISEs) (62) and reference electrodes (64) and systems for automatically determining heparin concentration in the cartridges are provided. Some systems add blood to a protamine bolus sufficient to bind all heparin, leaving excess protamine. The excess protamine concentration can be determined by measuring the initial slope of the electrode potential rate of change, and comparing the slope to known protamine concentration slope values In some cartridges, an oscillating pressure source moves the blood-protamine mixture back and forth across the protamine ISE. Some systems also use a second blood sample having the heparin removed or degraded to create a blank reference sample. Protamine ISEs can include polyurethane polymer, DNNS ionophore, and NPOE plasticizer. The polyurethane may include hard segments and soft segments, where both hard and soft segments may include cyclic and straight chain aliphatic moieties having essentially no ester or ether groups. Some hard segments may include methylene diphenyl groups. Some reference electrodes have the same polymer, plasticizer, and ionophore as the measurement electrode, but with a different concentration of ionophore.