Abstract:
Disclosed is a method for transitioning a remote station from a current serving network node having an enhanced security context to a new serving network node. In the method, the remote station provides at least one legacy key, and generates at least one session key based on an information element associated with the enhanced security context. The remote station forwards a first message having the information element to the new serving network node. The remote station receives a second message, from the new serving network node, having a response based on either the legacy key or the session key. The remote station determines that the new serving network node does not support the enhanced security context if the response of the second message is based on the legacy key. Accordingly, the remote station protects communications based on the legacy key upon determining that the enhanced security context is not supported.
Abstract:
Disclosed is a method for transitioning an enhanced security context from a UTRAN/GERAN-based serving network to an E-UTRAN-based serving network. In the method, the remote station the remote station generates first and second session keys, in accordance with the enhanced security context, using a first enhanced security context root key associated with a UTRAN/GERAN-based serving network and a first information element. The remote station receives a first message from the E-UTRAN-based serving network. The first message signals to the remote station to generate a second enhanced security context root key for use with the E-UTRAN-based serving network. The remote station generates, in response to the first message, the second enhanced security context root key from the first enhanced security context root key using the s first and second session keys as inputs. The remote station protects wireless communications, on the E-UTRAN-based serving network, based on the second enhanced security context root key.
Abstract:
An authentication method is provided between a device (e.g., a client device or access terminal) and a network entity. A removable storage device may be coupled to the device and stores a subscriber-specific key that may be used for subscriber authentication. A secure storage device may be coupled to the device and stores a device-specific key used for device authentication. Subscriber authentication may be performed between the device and a network entity. Device authentication may also be performed of the device with the network entity. A security key may then be generated that binds the subscriber authentication and the device authentication. The security key may be used to secure communications between the device and a serving network.
Abstract:
Método para establecer un contexto de seguridad aumentado entre una estación remota y una red servidora. En el método, la estación remota envía un primer mensaje a la red servidora, en donde el primer mensaje incluye un elemento de información que senaliza que la estación remota soporta un contexto de seguridad aumentado. La estación remota genera al menos una clave de sesión, de acuerdo con el contexto de seguridad aumentado, usando el elemento de información. La estación remota recibe, en respuesta al primer mensaje, un segundo mensaje con una indicación que la red servidora soporta el contexto de seguridad aumentado. La estación remota, en respuesta al segundo mensaje, tiene las comunicaciones inalámbricas protegidas por al menos una clave de sesión.
Abstract:
Disclosed is a method for transitioning an enhanced security context from a UTRAN/GERAN-based serving network to an E-UTRAN-based serving network. In the method, the remote station the remote station generates first and second session keys, in accordance with the enhanced security context, using a first enhanced security context root key associated with a UTRAN/GERAN-based serving network and a first information element. The remote station receives a first message from the E-UTRAN-based serving network. The first message signals to the remote station to generate a second enhanced security context root key for use with the E-UTRAN-based serving network. The remote station generates, in response to the first message, the second enhanced security context root key from the first enhanced security context root key using the s first and second session keys as inputs. The remote station protects wireless communications, on the E-UTRAN-based serving network, based on the second enhanced security context root key.
Abstract:
An authentication method is provided between a device (e.g., a client device or access terminal) and a network entity. A removable storage device may be coupled to the device and stores a subscriber-specific key that may be used for subscriber authentication. A secure storage device may be coupled to the device and stores a device-specific key used for device authentication. Subscriber authentication may be performed between the device and a network entity. Device authentication may also be performed of the device with the network entity. A security key may then be generated that binds the subscriber authentication and the device authentication. The security key may be used to secure communications between the device and a serving network.
Abstract:
Disclosed is a method for transitioning a remote station from a current serving network node having an enhanced security context to a new serving network node. In the method, the remote station provides at least one legacy key, and generates at least one session key based on an information element associated with the enhanced security context. The remote station forwards a first message having the information element to the new serving network node. The remote station receives a second message, from the new serving network node, having a response based on either the legacy key or the session key. The remote station determines that the new serving network node does not support the enhanced security context if the response of the second message is based on the legacy key. Accordingly, the remote station protects communications based on the legacy key upon determining that the enhanced security context is not supported.
Abstract:
Disclosed is a method for transitioning an enhanced security context from a UTRAN/GERAN-based serving network to an E-UTRAN-based serving network. In the method, the remote station the remote station generates first and second session keys, in accordance with the enhanced security context, using a first enhanced security context root key associated with a UTRAN/GERAN-based serving network and a first information element. The remote station receives a first message from the E-UTRAN-based serving network. The first message signals to the remote station to generate a second enhanced security context root key for use with the E-UTRAN-based serving network. The remote station generates, in response to the first message, the second enhanced security context root key from the first enhanced security context root key using the s first and second session keys as inputs. The remote station protects wireless communications, on the E-UTRAN-based serving network, based on the second enhanced security context root key.
Abstract:
A method and apparatus are provided for a subsidizing service provider entity to personalize a subscriber device to ensure the subscriber device cannot be used in a network of a different service provider entity. As the service provider entity subsidizes the subscriber device, it desires to ensure that subscriber device is personalized such that the subscriber device may operate only in its network and not a network of a different service provider entity. The subscriber device is pre-configured with a plurality of provider-specific and/or unassociated root certificates by the manufacturer of the subscriber device. A communication service is established between the service provider entity and the subscriber device allowing for the mutual authentication of the subscriber device and the service provider entity. After mutual authentication, the service provider entity sends a command to the subscriber device to disable/delete some/all root certificates that are unassociated with the service provider entity.
Abstract:
A method and apparatus are provided for reducing latency and/or delays in performing a security activation exchange between a communication device and a network entity. The communication device may pre-compute a plurality of possible keys using a base key and a plurality of possible inputs in anticipation of receiving an indicator from the network entity that identifies a selected input to be used in generating a corresponding selected key. An indicator is then received from the network entity, where the indicator identifies the selected input from among the plurality of possible inputs. The communication device then selects a first key among the pre-computed plurality of possible keys as the selected key upon receipt of the indicator, wherein the first key is selected because it was pre-computed using the selected input. Because the first key is pre-computed, delays in responding to the network entity are reduced.