Abstract:
Systems and methodologies are described that facilitate avoidance of duplicative resource allocation and/or erroneous service charges via unambiguously indicating an entity responsible for quality of service (QoS) initiation. In one example, an indication is provided to a mobile device to indicate a preference for network-initiated QoS or a preference for device -initiated QoS. QoS for a data flow can be established in accordance with the indication. For instance, the mobile device initiates QoS when the indication specifies a preference for device-initiated QoS while a network establishes QoS when the indication specifies a preference for network-initiated QoS.
Abstract:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.
Abstract:
Described aspects provide for improving the mobility of wireless communication devices between one network domain and another network domain, specifically, but not limited to, between a Wireless Local Area Network (WLAN) and a cellular network and the like. Present aspects provide for services to be moved seamlessly and in a reliable manner between the cellular and WLAN domains in order to minimize service disruption for the end user and provide the requisite Quality of Service (QoS) for the different applications. The aspects herein presented provide for various mechanisms that serve to improve the decision points related to when and what technology each service is expected to be associated with and provides better techniques to move the wireless communication device between cellular and WLAN domains when in-traffic and when idle.
Abstract:
Providing for distributed access point management for access to a mobile network is described herein. By way of example, an interface application maintained at a Femto cell base station (BS) can facilitate initial power up and/or acquisition for a Femto user terminal (UT). Upon start-up, a bootstrap process is utilized by the Femto cell to provision the UT with an SDL establishing at least one BS as high priority within a particular geographic area (GEO). Thus, when the Femto UT is within the GEO, the UT is more likely to acquire, camp on and/or handoff to the preferred BS. When outside the GEO, a serving access point can provision the Femto UT OTA with a custom SDL suited to another GEO having a different high priority access point. By implementing access point management at distributed access points, expensive network equipment can be mitigated or avoided.
Abstract translation:这里描述了用于访问移动网络的分布式接入点管理。 作为示例,维持在毫微微小区基站(BS)的接口应用可以有助于对于毫微微用户终端(UT)的初始加电和/或获取。 在启动时,毫微微小区利用自举过程来向UT提供在特定地理区域(GEO)内建立至少一个BS作为高优先级的SDL。 因此,当毫微微UT在GEO内时,UT更有可能获得,驻留和/或切换到首选BS。 在GEO外部,服务接入点可以为Femto UT OTA提供适合具有不同高优先级接入点的另一个GEO的自定义SDL。 通过在分布式接入点实现接入点管理,可以减轻或避免昂贵的网络设备。
Abstract:
Providing for centralized access management to diverse types of mobile network access points is described herein. By way of example, network components can generate a system determination list (SDL) for a user terminal (UT) that is customized to access capabilities of the UT and/or current position of the UT. The SDL can be employed by the UT to determine which network access points to camp on, handoff to, or the like. The network components can include a network database that maintains UT subscriber and related home Femto cell information, or such information can be maintained at a network operator s home location register. In some aspects, the information can be obtained over the air from the UT or from a base station serving the UT.
Abstract:
Systems and methodologies are described that facilitate triggering multi-carrier requests at a mobile device and granting or denying the request at the access point. The mobile device can determine when to request additional carriers from the access point based on communication parameters, such as buffer levels, inflow/outflow data rates, PA headroom for handling an additional carrier, a timer for requesting the carrier, a maximum number of allocable carriers, and/or the like. Upon receiving the request, the access point can grant or deny the request based at least in part on subscriber level of the mobile device, available resources in the access point, reverse link throughput, and/or the like. Allocating additional carriers to the mobile device can increase throughput for communicating with the access point.
Abstract:
Systems and methodologies are described that effectuate establishment of an IPSec tunnel for utilization in a wireless communication environment. IPSec establishment procedures on home base stations can be used to establish IPSec tunnels between home base stations situated on open access sectors of wireless communication environments and packet data interworking function components positioned at the contiguity of secured segments of the wireless communication environments. Moreover, high rate packet data point-to-point protocol challenge-handshake authentication protocols can be directed through the IPSec tunnels to facilitate authentication of access terminals associated with the home base stations in order to facilitate further communications with components dispersed within secure areas of wireless communication environments. Further, international mobile subscriber identities (IMSI) affiliated with access terminals associated with home base stations can be used to identify packet data serving nodes with which to establish communications between home base stations and packet data serving nodes.
Abstract:
An access terminal scans for nearby access points and maintains a candidate list of access point with which the access terminal may associate in the event the access terminal's communication with its current access point deteriorates for some reason. This search procedure may be performed in a proactive manner whereby the access terminal repeatedly performs scans and updates its list of candidate access points when it is powered on. In some aspects, the search procedure used by the access terminal may be based on a state of the wireless device. In addition, different states of the access terminal may be associated with different optimization criteria.
Abstract:
Methods and systems to facilitate mobility of devices between WWAN and WLAN systems/domains are described herein. A mobile station is registered with a preferred system/domain and a non-preferred system/domain and uses one or more public identities and one or more associated private identities to perform registrations over the preferred and non-preferred systems/domains. One or more of the associated systems/domains are further monitored for a paging signal transmitted over the network. In response to the paging signal, the mobile station transmits a paging response signal over the system/domain that facilitated transmission of the paging signal.
Abstract:
Techniques to detect for end of service using dynamic inactivity timer thresholds are described. An access terminal establishes a radio connection for one or more applications. Data and signaling for the application(s) may be sent on one or more first flows (e.g., RLP flows) that may carry any number of second flows (e.g., IP flows). The access terminal determines a dynamic inactivity timer threshold for each first flow, e.g., based on at least one inactivity timer threshold for at least one second flow mapped to that first flow. The access terminal determines whether each first flow is inactive based on the inactivity timer threshold for that first flow, e.g., declares each first flow to be inactive if no activity is detected on that first flow for a period exceeding the inactivity timer threshold. The access terminal closes the radio connection when all first flow(s) are determined to be inactive.