Abstract:
There is described a numbering device (1) for carrying out numbering in sheet-fed or web-fed numbering presses, the numbering device (1) comprising a numbering unit (6) with rotatable numbering wheels (7) carrying alpha-numerical symbols thereon, which numbering wheels (7) are disposed next to each other and rotate about a common rotation axis (17), the numbering device (1) further comprising electro-mechanical actuation means for setting the position of the numbering wheels (7). The electro-mechanical actuation means are entirely located within the numbering device (1) and are mechanically autonomous, the electro-mechanical actuation means comprising a plurality of independent driving means (15, 18-23; 23*) for actuating a corresponding plurality of the numbering wheels.
Abstract:
There is described an apparatus (1) for coating a cylinder (C), in particular a wiping cylinder of an intaglio printing press, with a plastic composition comprising inter alia a blade mechanism (4) comprising a single substantially planar blade (40) with a straight edge (40a) extending along the full length of the cylinder to be coated and which is mounted rotatably about an axis parallel to the axis of rotation of the cylinder to be coated. The blade comprises, at its terminal end proximate to the cylinder, an inclined end portion (4a) having an inverted-V shape rising from the upper side of the blade, the top edge of the inclined end portion forming the straight edge of the blade. The blade is adapted to be rotated so that the straight edge of the blade undergoes an upward movement substantially tangential to the periphery of the cylinder in order to discontinue the application of the plastic composition onto the surface of the cylinder.
Abstract:
A method for controlling the quality of printed documents, such as banknotes, in which only part of the surface of the printed documents is available for inspection, comprising the steps of (i) storing a reference image; (ii) acquiring a sample image of a sample printed document to be controlled, which sample image covers only a limited portion of the sample printed document; (iii) selecting a search pattern within the acquired sample image; (iv) searching the reference image for a match with the selected search pattern, (v) determining control parameters linked to the position of the search pattern within said sample image and within said reference image, (vi) comparing the control parameters linked to the position of the search pattern within the sample image with the control parameters linked to the position of the search pattern within the reference image; and (vii) based on the results of the comparison of the control parameters, accepting or rejecting the sample printed document.
Abstract:
There is described a sheet inspection system for a sheet-fed recto-verso printing press of the type comprising two printing cylinders (10, 20) for carrying out simultaneous recto-verso printing of the sheets, said sheet inspection system comprising at least a first inspection device (100) for taking an image of a first side of the printed sheets. The first inspection device (100) comprises a first line image sensor (110) for performing line-scanning image acquisition of the first side of the printed sheets, and the first inspection device (100) is disposed in such a way that the first line image sensor visually acquires an image of a printed sheet while the said printed sheet is still adhering onto the surface of a first one (10) of the two printing cylinders (10, 20) of the printing press and immediately before the said printed sheet is transferred to a chain gripper system (5) of the printing press. Also described is a printing press equipped with the inspection system.
Abstract:
The system comprises a wiping tank (1), a wiping roller (2) rotatably supported in the wiping tank and having a circumferential surface and cleaning means for cleaning the surface of the wiping roller, said cleaning means comprising at least a first spray unit (4) for spraying clean wiping solution against the surface of the wiping roller and a drying blade (12) placed downstream of said first spray unit with respect to a direction of rotation of said wiping roller for removing wiping solution residues from the surface of the wiping roller. The cleaning means further comprise a cleaning assembly including at least one supporting plate (5; 25) with a series of holes (5′, 30, 31, 32, 33) and holding means (7, 8, 10, 11) for holding the supporting plate, said supporting plate being conformed to extend parallel to a part of the circumferential surface of the wiping roller without touching said wiping roller. The cleaning assembly further comprising at least a cleaning sheet (6; 26, 26a, 26b) made of porous material placed on said supporting plate and in contact with the surface of said wiping roller for removing ink therefrom. The first spray unit (4) is disposed before an upstream end of the cleaning assembly with the respect to the direction of rotation of the wiping roller (2) in such a way as to spray clean wiping solution directly between the surface of the wiping roller (2) and the upstream end of the cleaning assembly.
Abstract:
There is described a cylinder body (10) for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate, which cylinder body (10) has a plurality of magnetic-field-generating devices (50, 60) disposed on an outer circumference of the cylinder body (10). The cylinder body (10) comprises a plurality of distinct annular supporting rings (40) distributed axially along a common shaft member (20), each annular supporting ring (40) carrying a set of magnetic-field-generating devices (50, 60) which are distributed circumferentially on an outer circumference of the annular supporting rings (40).
Abstract:
The process for treating stacks formed of a predetermined number of planar substrates, such as securities, banknotes, checks and other similar documents, said securities being formed by prints on said substrates arranged in matrix-form in lines and columns, comprises the steps of (a) displacing the stack under a cutting device; (b) cutting a strip of the stack with cutting means; (c) evacuating the cut strip for liberating the front side of the stack which is under the cutting means; (d) taking an image of the front side of the stack; (e) counting the number of substrate in the stack by analyzing the image taken; (f) resuming the process at step (a) until all strips of a stack have been cut and starting with another stack.
Abstract:
There is described a method for varnishing security documents, especially intaglio-printed security documents such as banknotes, wherein both sides of the security documents are covered by a protective varnish. The method comprises the step of applying a thicker layer of protective varnish on a side of the security documents which exhibits a greater surface roughness, especially the side which is opposite to the side of the security documents which was last printed by intaglio printing. Also described in a varnishing machine for carrying out the above method.
Abstract:
There is described the use of a transparent film comprising a non-fibrous substrate layer of regenerated cellulose in the manufacture of a security article exhibiting printed information, wherein said transparent film is the material on which printed information and optionally one or more other security feature(s) is disposed, and wherein said transparent film exhibits one or more, and preferably all, of the following properties: haze of no more than 10%, preferably no more than 5%, preferably no more than 4%, preferably no more than 2.5%; birefringence of from about 400 to about 800 nm; a surface energy of at least about 38 dynes, preferably at least about 40 dynes, preferably at least about 42 dynes, and preferably no more than from about 60 dynes; and a water vapour permeability in the range of from about 20 to about 40, preferably from about 25 to about 35, preferably from about 28 to about 32 g/m2/24 hours at 25° C. and 75% relative humidity, and/or in the range of from about 110 to about 130, preferably from about 115 to about 125, preferably from about 118 to about 122 g/m2/24 hours at 38° C. and 90% relative humidity.
Abstract:
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into an offset printing device a transparent film comprising a non-fibrous substrate layer of regenerated cellulose; disposing an opacification layer on at least a portion of at least one surface of said film by a first offset printing step; and disposing printed information on at least a portion of said opacification layer by a second offset printing step.