Abstract:
A driving apparatus (100) is provided with: a first base part (110-1); a second base part (110-2); a first elastic part (120a-1, 120b-1); a driven part (130); a second elastic part (120a-2, 120b-2); and an applying part (160) which is configured to apply, to the second base part, an excitation force for rotating the driven part such that the driven part rotates while resonating around the axis along the one direction, at a resonance frequency determined by the second elastic part and the driven part, the applying part applies the excitation force such that the second base part vibrates and deforms in a shape of stationary wave along the another direction and the deformational vibration becomes resonance, the resonance frequency at which the second base part resonates is same as a resonance frequency of the driven part.
Abstract:
A sound wave generator includes a speaker control circuit and a speaker. The speaker control circuit includes a signal generating unit that is configured to generate an electric signal having a humming frequency property. The humming frequency property includes a plurality of frequencies that have an overtone relationship with respect to A Hz and are pitched at the A Hz, the A Hz being a target generation frequency and corresponding to a low pitch frequency in an audible range. The speaker generates a sound wave from the electric signal by applying the electric signal to a vibration plate that produces the sound wave.
Abstract:
In a notifying device comprising a notifying unit 2 having incorporated therein a vibrator to be resonated by a drive signal fed thereto, and a signal preparing circuit 5 for feeding the drive signal to the notifying unit 2, the signal preparing circuit 5 prepares a drive signal Dv varying in frequency within a predetermined range including the resonance frequency of the vibrator of the unit 2 and feeds the signal to the notifying unit 2. The variation of frequency of the drive signal is determined in correspond relation with a variation in the resonance frequency of the vibrator due to tolerances for specifications which govern the resonance frequency. The drive signal has an alternating waveform of rectangular waves or sine waves, and the frequency thereof varies periodically from 1.37 to 2.98 Hz. The notifying device achieves a satisfactory notifying effect despite the variation of the resonance frequency of the vibrator.
Abstract:
An apparatus for controlling a vibration includes a vibration transfer unit; at least one pair of oscillators disposed spaced apart from each other in the vibration transfer unit, and configured to generate a vibration in the vibration transfer unit; at least one driver configured to selectively drive the at least one pair of oscillators; and a controller configured to control the at least one driver and thereby move a center of the vibration within the vibration transfer unit so as to create a moving vibration sensation.
Abstract:
A switching circuit for an electromagnetic source for generating acoustic waves has at least one first capacitor connected in parallel with a series circuit formed by a second capacitor and an electronic switch. The switching circuit is connected to a coil of the electromagnetic source, and the first and second capacitors are switched so as to both discharged into the coil, thereby supplying the coil with current.
Abstract:
A circuit of the present invention is a driving circuit for driving a vibrator having a mechanical vibration system which resonates at a resonance frequency. The driving circuit outputs to the vibrator at least two signals of different frequencies which are included in a frequency range including the resonance frequency. The vibrator has a function of converting an electric signal into at least one of a sound and a vibration.
Abstract:
The method of controlling a linear vibration welding apparatus, in accordance with the invention, may comprise the steps of: fastening a first workpiece portion in a fixed position; fastening a second workpiece portion to a reciprocating member; energizing a first single winding magnet with direct current power to create a magnetic field; sensing a location of the reciprocating member with respect to a zero point; and energizing a second magnet when the reciprocating member has crossed the zero point when moving towards the first magnet. The linear vibration welding apparatus in accordance with the invention may comprise: a frame; a flexure array; a first magnet assembly; a second magnet assembly; a digital controller; and direct current amplifiers for powering the magnet assemblies.
Abstract:
This invention includes a square wave signal generating circuit 20 for generating a square wave signal whose frequency changes; a MOS transistor 12 which is turned on/off on the basis of the square wave signal to supply a driving current to a vibrator 14; and a frequency shift detecting circuit 24 for detecting a frequency shift between the square wave signal from the square wave generating circuit and a resonance frequency of the vibrator. The shift in the frequency generated by the square wave generating circuit is trimmed by a signal detected by the frequency shift detecting circuit.
Abstract:
A horn comprising a diaphragm, an electromagnet, a transducer to sense the vibrations of the diaphragm and generate a vibration-dependent electrical signal, and a feedback circuit which controls a power supply to the electromagnet. The feedback circuit includes an electronic power circuit (E, IEP) controlled by a control circuit (.mu., F, CCS) arranged to adapt, condition and process the electrical signal from the transducer (S) in such a manner as to automatically determine the frequency and duty cycle for controlling the electronic power circuit (IEP) under the various environmental, electrical feed and constructional tolerance conditions of the horn.