Abstract:
A porous membrane comprising a polyvinylidene fluoride resin and having a uniform, three-dimensional, network pore structure. The membrane has excellent chemical resistance, excellent filtering characteristics and excellent mechanical properties. The porous membrane can be produced by blending a polyvinylidene fluoride resin, an organic liquid and a powdery hydrophobic silica, subjecting the resultant blend to melt-molding to form a membrane, and extracting the organic liquid and the hydrophobic silica from the melt-molded membrane.
Abstract:
A single-phase composite structure of filamentary and non-filamentary semicrystalline morphology made from the same polymer, which is of a type capable of gelling in a suitable solvent and of being deformed into a high-modulus, high-strength product. Layers of the polymer in sheet form are interleaved with at least one layer, also of that polymer, made from filaments thereof. The method of making the product may involve heating a sheet of UHMWPE or other polymer gel (5% UHMWPE in 95% paraffin oil, by weight) to 125.degree. C., applying a knitted UHMWPE high modulus, high-strength structure on one side thereof, extracting the non-volatile paraffin oil therefrom with hexane, and evaporating the hexane.
Abstract:
A method of making a microporous material is provided which comprises the steps of melt blending crystallizable thermoplastic polymer with a compound which is miscible with the thermoplastic polymer at the melting temperature of the polymer but phase separates on cooling at or below the crystallization temperature of the polymer, forming a shaped article of the melt blend, cooling the shaped article to a temperature at which the polymer crystallizes to cause phase separation to occur between the thermoplastic polymer and the compound to provide an article comprising a first phase comprising particles of crystallized thermoplastic polymer in a second phase of said compound, orienting the article in at least one direction to provide a network of interconnected micropores throughout. The microporous article comprises about 30 to 80 parts by weight crystallizable thermoplastic polymer and about 70 to 20 parts by weight of the compound. The oriented article has a microporous structure characterized by a multiplicity of spaced randomly dispersed, equiaxed, non-uniform shaped particles of the thermoplastic polymer which are coated with the compound. Adjacent thermoplastic particles within the article are connected to each other by a plurality of fibrils consisting of the thermoplastic polymer. The fibrils radiate in three dimensions from each particle. The compound may be removed from the sheet article. e.g., by solvent extraction. The preferred article is a sheet material.
Abstract:
Novel microporous polymers in forms ranging from films to blocks and intricate shapes from synthetic thermoplastic polymers, such as, olefinic, condensation, and oxidation polymers, are disclosed. In one embodiment the microporous polymers are characterized by a relatively homogeneous, three-dimensional cellular structure having cells connected by pores of smaller dimension. Also disclosed are microporous polymer products which contain relatively large amounts of functionally useful liquids and behave as solids.
Abstract:
The starting materials for the practice of the present invention are (1) one or more organic monomers or oligomers which upon irradiation very rapidly undergo a polymerization reaction to form a solid polymer; and (2) a liquid vehicle in which the one or more organic monomers or oligomers are soluble but in which the polymer formed is insoluble. For the manufacture of microporous membrane in accordance with the invention the monomers or oligomers are dissolved in the liquid vehicle, the resulting solution is formed into a thin layer, and the thin layer of the solution is then irradiated as with ultraviolet or electron beam radiation whereupon the rapid polymerization reaction immediately ensues and the polymer formed immediately segregates from the vehicle thereby resulting in microporous membrane from which the vehicle can be removed as by evaporation or washing. Because the radiation-induced polymerization reaction and the segregation of the polymer formed are so rapid, the membrane formed has cells and communications therebetween of very small dimensions thereby providing the microporous structure. Where ultraviolet radiation is used the solution also includes a photoinitiator.
Abstract:
A microporous film which comprises a matrix comprising 40 to 90 volume percent of a polyolefin having a number average molecular weight of 15,000 or more and 10 to 60 volume percent of an inorganic filler, said matrix having therein void spaces at a rate of 30 to 75 volume percent based on the volume of the film; and 2 to 20 weight percent, based on the total weight of the polyolefin and the inorganic filler, of an organic substance which is substantially insoluble in and inert to sulfuric acid and has a solubility parameter ranging from 7.3 inclusive to 8.4 exclusive; said organic substance, in its majority, adhering to the overall surface of the film including the outer surfaces of the film and the surfaces of the polyolefin walls defining said void spaces in cooperation with said inorganic filler.
Abstract:
Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.
Abstract:
The disclosed invention relates to films from a novel latex mixture which are non-porous, microcellular and opaque in the absence of an opacifying agent. The preparation of the films of the disclosed invention comprises providing control techniques for entrapping a sufficient amount of a liquid non-solvent for the polymer in the polymer matrix of a latex after the continuous phase removal, so that upon evaporation of the non-solvent from a coalesced and tack-free polymer matrix, a resulting opaque and continuous, non-porous film is produced which will have minute, discrete and substantially closed voids and which is opaque in the absence of an opacifying agent such as pigment.The disclosed invention also relates to opaque films with enhanced optical properties produced by the inclusion of pigments, fluorescent materials and optical brighteners in the opaque films in such a manner as to maximize their effectiveness therein.
Abstract:
A method is disclosed for the preparation (by the utilization of a proper solvent system) of dry asymmetric membranes comprising a porous layer of interconnected crystals of polymer material. Membranes of many polymer materials may be optionally prepared either with or without a dense surface layer as one face thereof. In either case the porous layer is structured with graded porosity. A three-component casting solution is prepared containing the polymer, a first good volatile solvent for the polymer and (relative to the first solvent) a poor less-volatile solvent for the polymer, which is miscible with the good solvent. A membrane is cast at room temperature, allowed to desolvate at room temperature for a short time and is then immersed in a precipitating agent, that is miscible with both the aforementioned solvents but is a non-solvent for the polymer. The membrane is then permitted to dry.
Abstract:
A method is disclosed for the preparation (by the utilization of a proper solvent system) of dry asymmetric membranes comprising a porous layer of interconnected crystals of polymer material. Membranes of many polymer materials may be optionally prepared either with or without a dense surface layer as one face thereof. In either case the porous layer is structured with graded porosity. A three-component casting solution is prepared containing the polymer, a first good volatile solvent for the polymer and (relative to the first solvent) a poor less-volatile solvent for the polymer, which is miscible with the good solvent. A membrane is cast, allowed to desolvate for a short time and is then immersed in a leaching agent, that is miscible with both the aforementioned solvents but is a non-solvent for the polymer. The membrane is then permitted to dry.