Abstract:
The present invention relates to a method for producing a magnetic substrate for an encoder scale. The method comprising the step of mechanically working the substrate, wherein the substrate is cooled prior to the mechanical working step. In one embodiment, a stainless steel substrate is used. The stainless steel may comprise an austenite (non-magnetic) phase and a martensite (magnetic) phase. Mechanically working and cooling in this manner increases the amount of magnetic (martensite) phase material that is formed, thereby improving the magnetic contrast when non-magnetic (austenite) marking are subsequently formed on the substrate by laser marking.
Abstract:
A damping plate capable of suppressing a production cost to a low level and eliminating a dislocation from occurring on a substrate starting with a cracking even if an external force is applied to it from a side direction, wherein a linear bead part (24) is formed at a specified part of a metal plate (10) so as to provide a damping effect to the metal plate (10) by a cracking (26) caused in the bead part (24) and, in the steel plate (10) large in hardening capability, a linear hardened part (28) is formed at a specified part of the steel plate (10) so as to provide a damping effect to the steel plate (10) by a cracking (30) caused in the hardened part (28).
Abstract:
A process for the production of a steel material comprising rolling a steel material having a structure mainly comprising ferrite or ferrite plus pearlite or ferrite plus cementite at a percentage reduction of area of at least 20 % in a ferrite recrystallization temperature region to achieve such characteristics as a crystal particle diameter of not greater than 3 mu m, preferably not greater than 1 mu m, an elongation of at least 20 %, a value of tensile strength (TS: MPa) x elongation (El: %) of at least 10,000 or a percent ductile fracture of at least 95 %, preferably 100 %, in an actual pipe Charpy impact test at -100 DEG C. Particularly, this process yields a steel material containing 0.05 to 0.30 wt.% of C, 0.01 to 3.0 wt.% of Si, 0.01 to 2.0 wt.% of Mn and 0.001 to 0.10 wt.% of Al and having a structure comprising ferrite alone or ferrite and a second phase, wherein the ferrite particle diameter is not greater than 3 mu m and the areal ratio of the second phase is not greater than 30 %. An untreated steel pipe having the composition described above is heated to (Acl + 50 DEG C) to 400 DEG C and subjected to stretch reduction at a cumulative diameter reduction ratio of at least 20 % in a rolling temperature range of (Acl + 50 DEG C) to 400 DEG C. In this case, the rolling process preferably contains at least one rolling pass having a diameter reduction ratio of at least 6 % in the stretch reduction. When the contents of C, Si, Mn and other alloy elements are kept at low levels and stretch reduction is carried out in the temperature range described above, a steel pipe having high ductility and strength and improved toughness and stress corrosion crack resistance can be manufactured and the resulting pipe can be used as a line pipe. The fatigue resistance can be improved, too.
Abstract:
A thermocouple (10) formed of a length of a single composition having a first solid phase section (12) adjoining a second solid phase section (16), and a transition (14) therebetween. One method of making such thermocouples (10) is to raise the temperature of the first solid phase section (12) above its transformation temperature while maintaining the temperature of the second adjoining solid phase section (16). A second method includes rapidly solidifying a molten material (40) by contacting it with a moving substrate (44) formed of adjoining regions of differing thermal conductivity (48, 46). A third method includes rapidly solidifying a molten material (72) by alternatingly contacting it with a cooling fluid (76) and air. A fourth method includes transforming a section of a length of material in a first solid phase to a second solid phase by mechanical means.
Abstract:
The manufacturing method of the reference piece for measuring retained austenite includes performing quenching and tempering a metal member after performing nano-crystallization on at least a portion of a surface of the metal member.
Abstract:
The present invention provides a steel material which has a plate shape and achieves both high strength and high rigidity by imparting large nonuniform deformation to the steel material utilizing rolling using a large-diameter work roll. The steel plate according to an embodiment of the present invention is produced by performing rolling using a rolling mill having a work roll diameter of 650 mm or more in a warm temperature region so that a nonuniform metallographic structure is formed in a plate thickness direction and thus the steel plate of the present invention is a high-strength and high-rigidity steel plate in which a yield strength is 580 MPa or more and a Young's modulus at a plate thickness center portion or a surface layer portion is 210 GPa or more and a difference in Young's moduli at the plate thickness center portion and the surface layer portion is 5 GPa or more in a case in which a tensile direction in a tensile test is at least any one of a rolling direction, a plate width direction, or a direction forming an angle difference of 45 degrees from the rolling direction and the plate width direction.
Abstract:
Disclosed are a quenched steel sheet and a method for manufacturing the same. The quenched steel sheet according to an aspect of the present invention contains, in terms of wt %, C: 0.05˜0.25%, Si: 0.5% or less (excluding 0), Mn: 0.1˜2.0%, P: 0.05% or less, S: 0.03% or less, the remainder Fe, and other unavoidable impurities, wherein a refined structure of the steel sheet comprises 90 volume % or more of martensite with a first hardness and martensite with a second hardness.
Abstract:
In various embodiments, electronic devices such as thin-film transistors incorporate electrodes featuring a conductor layer and, disposed below the conductor layer, a barrier layer comprising an alloy of Cu and one or more refractory metal elements selected from the group consisting of Ta, Nb, Mo, W, Zr, Hf, Re, Os, Ru, Rh, Ti, V, Cr, and Ni.
Abstract:
Processes for fabricating components to have two or more regions with different grain structures, and components produced by such processes. The processes entail performing at least one forging step on a preform to produce a profile having at least a first portion corresponding to the first region of the component. The preform is formed of a precipitation-strengthened alloy having a solvus temperature, and the at least one forging step comprises a nonfinal forging step performed at a first strain rate and at a first subsolvus temperature that is below the solvus temperature of the alloy. A subsequent forging step is performed on the profile to produce a final profile comprising the first portion and a second portion corresponding to the second region of the component. The subsequent forging step is performed at a strain rate and at a subsequent subsolvus temperature, wherein at least one of the subsequent strain rate and subsequent subsolvus temperature is either higher or lower than the first strain rate or first subsolvus temperature. A heat treatment is then performed on the final profile to cause grain growth, wherein the first portion of the final profile has a different grain size than the second portion.
Abstract:
A method for making an ordered magnetic alloy includes (a) providing a thermally conductive base having opposite first and second surfaces; (b) forming a thermal barrier layer on the first surface of the thermally conductive base; (c) forming a disordered magnetic alloy layer on the thermal barrier layer, the disordered magnetic alloy layer being made from a disordered alloy which contains a first metal selected from Fe, Co, and Ni, and a second metal selected from Pt and Pd; and (d) after step (c), applying a transient heat to the thermally conductive base to cause rapid thermal expansion of the thermally conductive base, which, in turn, causes generation of an in-plane tensile stress in the disordered magnetic alloy layer.