Abstract:
A magnetic quick connect for a fluid delivery system includes a male coupling member and a female coupling member. The male coupling member defines a first outer fluid communication path and includes a first magnetic material. A first inner member is disposed within the first outer fluid communication path and defines a first inner communication path. The female coupling member defines a second outer fluid communication path and includes a second magnetic material. A second inner member is disposed within the second outer fluid communication path and defines a second inner communication path. The male and female coupling members are detachably held together by an attractive force between the first and second magnetic materials such that the first and second outer communication paths are held in fluid communication, and the first and second inner communication paths are held in fluid communication.
Abstract:
A connection device for pipe lines includes a connection element that has a receiving opening for a pipe line and a retainer element that stops the pipe line from being pulled out. The retainer element is designed as a spring-elastic toothed ring that has teeth distributed across a circumference and which extend radially inward at an incline and act against the pipe line. The toothed ring is mounted to have limited axial play. At the transition region between an outer circumferential region and the retainer teeth, the toothed ring interacts with a circumferential tilt edge such that the toothed ring can pivot about the tilt edge out of a position in which its outer circumferential region is pressed against a first, lower contact section and a second, upper contact section. The retainer teeth being able to be elastically deformed by bending.
Abstract:
A connecting device for media lines, having a housing part, which is formed in two parts from a receiving part for plug connection of a media line and from a connecting part for connecting the housing part to a unit or an additional media line. The connecting part is connected to the receiving part via a coaxial rotationally symmetrical plug connection with form-fitting engagement and with a peripherally closed line progression. The connecting part is inserted with an insertion projection into a plug receptacle of the receiving part, wherein the insertion projection reaches with a radially outward protruding catch step in a form-fitting manner behind a radial undercut surface inside of the plug receptacle.
Abstract:
An apparatus and method for plugging a tubular bore is disclosed herein. The apparatus comprises: a shaft member; one or more cylindrical compressible seals slideably disposed around the shaft member, wherein the shaft member passes axially through the one or more cylindrical seals; one or more cylindrical hard sleeves having one or more conical ends slideably disposed around the shaft member and adjacent to the one or more cylindrical seals; a flange attached at or near a distal end of the shaft member, wherein the flange retains the cylindrical sleeves and cylindrical seals on the shaft member; and a pulling mechanism disposed at or near a proximal end of the shaft member, wherein the seal is positioned between the flange and the one or more cylindrical hard sleeves such that compression of the seal causes it to expand away from the shaft member.
Abstract:
A quick disconnect coupler is provided that is particularly suited for use as a case drain coupler in an agricultural work vehicle. The coupler includes a male component lockingly received within a body of a female component in a coupled state of the coupler. The female component includes an external sleeve that is linearly slidable along a slide surface of the body to engage and release the male component. A cover is engaged on the female component with a first end fixed on the body and an opposite second end fixed to the sleeve. The cover is linearly expandable with movement of the sleeve and protects the slide surface from dust or other contaminates.
Abstract:
A coupling device for connecting a first fluid line to a second fluid line may include a first connecting piece having a first outer latching contour on its outside and may be connected to at least one of the first fluid line and the first outer latching contour. The coupling device may also include a second connecting piece having a second outer latching contour on its outside and being connected to at least one of the second fluid line and the second outer latching contour. A sleeve may also be provided in which both connecting pieces may be inserted on opposite ends thereof. The sleeve may have inner latching contours on its inner side, the inner latching contours being complementary to the outer latching contours and latching with the outer latching contours when the connecting pieces are inserted. The sleeve may be enclosed by a protective cover.
Abstract:
A disposable, one-time use, protective cover for rough plumb piping and nipples and the like (commonly called and hereinafter referred to as “stub-outs”) that prevents the exposed potable and wastewater stub-outs from being covered with material used during wall, ceiling and floor installation, sealing, painting and finishing. The protective cover comes in sizes to fit over the outside diameter of commonly used interior and exterior potable plumbing pipe sizes (e.g., ½″, ⅝″, ¾″) and interior wastewater pipe sizes (e.g., 1″ and 1½″). Plumbers and other workers put the elastic snugly fitting disposable protective cover on stub-outs after they complete the rough plumbing. After walls, ceilings and floors and have been installed, sealed and painted, the worker doing the finish work removes the disposable protective cover from the stub-outs and has access to a clean stub-out. Using this invention will allow plumbers, workers and home owners that are completing construction projects that include plumbing to install finish plumbing without having to clean material off of the stub-outs, which will save time and money.
Abstract:
A duct section and system, including a laminated shroud, acting as a secondary duct, for aerospace and other applications, and a method for constructing same. The duct structure incorporates a metallic primary duct tube, with a laminated shroud surrounding the primary duct tube and separated therefrom by an annular gap. The laminated shroud includes a metallic inner layer and a polymeric outer layer. Preferably, the thin metallic layer is a corrosion resistant material such as corrosion resistant stainless steel or titanium. In one embodiment of the invention, the outer polymeric layer is a polyimide material, such as polyimide resin-impregnated fiberglass cloth.
Abstract:
A plug connector for fluid conduits. The plug connector including a housing part with a plug socket for the fluid-tight insertion of a tubular plug-in part, a holding element for locking and a fluid seal for sealing the inserted plug-in part. The plug connector being arranged in a plug socket, the housing part being in two parts comprising a base part and an insert plate which is connected to the base part via a snap-action positive fit connection. The base part comprising a receiving part for the holding element, the fluid seal and the insert part, and a joining part for the joining connection of the housing part to a fluid conduit.
Abstract:
A method for providing a cured coating on a tube, comprising masking and sealing an end of the tube with a self-venting cap and plug, the cap and plug comprising a tubular member comprising a resilient material having an open end and a closed end, and having an outermost sidewall; the outermost sidewall having an interior surface having an annular ridge; the closed end having a hollow dome portion defined by an annular recess, the annular recess defining an inner sidewall with an upwardly-extending annular recess, the inner sidewall containing at least one gas venting groove terminating along the longitudinal extent of the inner sidewall, and the inner sidewall being spaced from the interior surface of the outermost sidewall of the tubular member a distance greater than the height of the inwardly-directed ridge; coating the tube with a curable coating; and curing the curable coating at an elevated temperature.