Abstract:
An apparatus for thermal processing of waste having organic and inorganic components comprises at least a treatment station, a cooling station and a treated material-removal station, and at least three crucibles. The treatment station is adapted to thermally treat the organic components and/or inorganic components located in a given one of the crucibles located at the treatment station. The so-treated components in this given crucible are adapted to then be cooled at the cooling station, before the treated components located in the given crucible are removed therefrom at the treated material-removal station. The three crucibles are mounted on a turntable so that the three crucibles are each at one of the stations, before synchronously all moving to each crucible's next station.
Abstract:
A method and apparatus for incinerating a medical waste material. The method includes introducing a volume of the medical waste material into a plasma zone of a non-thermal plasma generator. The method also includes introducing a volume of oxidizer into the plasma zone of the non-thermal plasma generator. The method also includes generating an electrical discharge between electrodes within the plasma zone of the non-thermal plasma generator to incinerate the medical waste material.
Abstract:
A method of generating syngas as a primary product from renewable feedstock, fossil fuels, or hazardous waste with the use of a cupola. The cupola operates selectably on inductive heat alone, chemically assisted heat, or plasma assisted heat. Additionally, the operation of the cupola is augmented by the use of direct acting carbon or graphite rods that carry electrical current for additional heat generation into the metal bath that is influenced by the inductive element. The method includes the steps of providing a cupola for containing a metal bath; and operating an inductive element to react with the metal bath. Feedstock in the form of a combination of fossil fuel, a hazardous waste, and a hazardous material is supplied to the cupola. A plasma torch operates on the metal bath selectably directly and indirectly. Steam, air, oxygen enriched air, and oxygen are supplied in selectable combinations.
Abstract:
A method for oxidizing a combustible material. The method includes introducing a volume of the combustible material into a plasma zone of a gliding electric arc oxidation system. The method also includes introducing a volume of oxidizer into the plasma zone of the gliding electric arc oxidation system. The volume of oxidizer includes a stoichiometrically excessive amount of oxygen. The method also includes generating an electrical discharge between electrodes within the plasma zone of the gliding electric arc oxidation system to oxidize the combustible material.
Abstract:
A low-temperature gasification system comprising a horizontally oriented gasifier is provided that optimizes the extraction of gaseous molecules from carbonaceous feedstock while minimizing waste heat. The system comprises a plurality of integrated subsystems that work together to convert municipal solid waste (MSW) into electricity. The subsystems comprised by the low-temperature gasification system are: a Municipal Solid Waste Handling System; a Plastics Handling System; a Horizontally Oriented Gasifier with Lateral Transfer Units System; a Gas Reformulating System; a Heat Recycling System; a Gas Conditioning System; a Residue Conditioning System; a Gas Homogenization System and a Control System.
Abstract:
A power generation system for converting organic material into thermal energy and electric power. A reaction of organic material with supercritical water, —OH radicals, and muon methyl radicals are released from a catalytic bed of silica particles in suspended initially transform the organic material into thermal energy. A Nano monomolecular film located on an interior surface of the reaction chamber interacts with plasma formed by conversion of the organic material into thermal energy to produce ion plasma electromagnetic energy. One or more magnetic-coil generators positioned adjacent to the reaction chamber interacts with the electromagnetic energy to produce electric power.
Abstract:
A method and apparatus is described for reformulating of an input gas from a gasification reaction into a reformulated gas. More specifically, a gas reformulating system having a gas reformulating chamber, one or more plasma torches, one or more oxygen source(s) inputs and control system is provided thereby allowing for the conversion of an input gas from a gasification reaction into a gas of desired composition.
Abstract:
A low-temperature gasification system comprising a horizontally oriented gasifier is provided that optimizes the extraction of gaseous molecules from carbonaceous feedstock while minimizing waste heat. The system comprises a plurality of integrated subsystems that work together to convert municipal solid waste (MSW) into electricity. The subsystems comprised by the low-temperature gasification system are: a Municipal Solid Waste Handling System; a Plastics Handling System; a Horizontally Oriented Gasifier with Lateral Transfer Units System; a Gas Reformulating System; a Heat Recycling System; a Gas Conditioning System; a Residue Conditioning System; a Gas Homogenization System and a Control System.
Abstract:
Disclosed is an environmentally responsible method for recycling electronic waste. The method optimizes the transportation and delivery of electronic waste to a recycling facility utilizing plasma gasification. The method tracks and categorizes the e-waste while billing manufacturers for the electronic waste received for recycling. In the process, the electronic articles are dismantled where certain valuable components are removed and recycled. The remaining e-waste proceeds to the plasma gasification process for metal extraction and gas production.
Abstract:
A system and process for upgrading hydrocarbons such as heavy oils includes a high temperature plasma reactor apparatus, in one or more vessels, into which the oils are introduced along with water, such as steam, to produce lighter hydrocarbon fractions, along with carbon monoxide and hydrogen, that flows to an additional stage where more hydrocarbons and water are introduced for further fractionating reactions facilitated by reaction of carbon monoxide and water to produce carbon dioxide and nascent, or prompt, free radicals of hydrogen. Heavy hydrocarbons upgraded can include heavy oils in the form of tar sands, oil shale, and oil residuals. The vessel or vessels can each contain a carbonaceous bed facilitating the described reactions and example embodiments include one vessel with the reactions performed in a single bed and, also, two vessels with the reactions performed in a carbonaceous bed portion in each vessel.