Abstract:
Sorbent compositions containing halogen and either nitrates or nitrites are added to coal to mitigate the release of mercury and/or other harmful elements into the environment during combustion of coal containing natural levels of mercury.
Abstract:
Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.
Abstract:
Powder components containing calcium, alumina, silica, iron, magnesium, and a halogen sorbent are used in combination during coal combustion to produce environmental benefits. Sorbents are added to the coal ahead of combustion and/or are added into the flame or downstream of the flame. The alkalinity and chlorine of the powder is minimized in order to mitigate unwanted fouling, especially when used with sub-bituminous and lignite coals.
Abstract:
Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.
Abstract:
A process is provided using non-food or limited-feed agricultural residue and energy crops for energy production, such as ethanol or electricity generation. The agricultural plant material is harvested and baled. The bales are transported to the processing site for storage or immediate processing. The bale strings are first removed, and then the broken bales are shredded. The shredded plant material is then ground to a small size. The ground material is then pelletized to produce densified pellets of the agricultural plant material. The pellets are cooled and then stored or transported to an end user.
Abstract:
A biomass-based fuel pellet, such as a fuel pellet which includes thermoplastic polymeric material and a substantial amount of cellulosic material, e.g. cellulosic material derived from biomass source(s), is provided. The fuel pellet commonly includes about 5 to 15 wt.% of the thermoplastic polymeric material and at least about 75 wt.% cellulosic material. Optionally, the fuel pellet may comprise a lignin additive. In certain embodiments, it may be desirable to produce the fuel pellets from a feed mixture which is substantially free of added wax material. Many embodiments of the fuel pellets are suitable for use in a coal-fired furnace and/or in other industrial boiler applications.
Abstract:
Sulfur emissions from combustion of coal and other fuels are reduced by using sugar beet lime as a sorbent during the coal burning process. In various embodiments, the sugar beet lime is added onto the coal before combustion, along with the coal into the furnace, is injected directly into the fire coal, or is added into the flue gases downstream of the furnace. The relatively high calcium content of the sugar beet lime leads to efficient sulfur capture at suitably low treat levels. Excess ash is avoided in the process.
Abstract:
Processes and compositions are provided for decreasing emissions of mercury upon combustion of fuels such as coal. Various sorbent compositions are provided that contain components that reduce the level of mercury and/or sulfur emitted into the atmosphere upon burning of coal. In various embodiments, the sorbent compositions are added directly to the fuel before combustion; are added partially to the fuel before combustion and partially into the flue gas post combustion zone; or are added completely into the flue gas post combustion zone. In preferred embodiments, the sorbent compositions comprise a source of halogen and preferably a source of calcium. Among the halogens, iodine and bromine are preferred. In various embodiments, inorganic bromides make up a part of the sorbent compositions.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.