Abstract:
An illumination apparatus used for fluorescence observation of a sample containing a fluorescent material by a microscope apparatus, comprising an excitation light emission unit that emits excitation light for exciting the fluorescent material contained in the sample. The excitation light emission unit illuminates at least a bleaching reduction illumination region around an observed region in which the sample is present.
Abstract:
Systems and methods for measuring the isotope ratio of one or more trace gases and/or components of gas mixtures such as different gas species present in a gas mixture. The system includes a resonant optical cavity having two or more mirrors and containing a gas, the cavity having a free spectral range that equals the difference between frequencies of two measured absorption lines of different gas species in the gas, or of two different isotopes, divided onto an integer number. The system also includes a continuous-wave tunable laser optically coupled with the resonant optical cavity, and a detector system for measuring an absorption of laser light by the gas in the cavity. The detector system includes one of a photo-detector configured to measure an intensity of the intra-cavity light or both a photo-acoustic sensor configured to measure photo-acoustic waves generated in the cavity and a photo-detector configured to measure an intensity of the intra-cavity light.
Abstract:
Described herein is a spectroscopic system and method for measuring and monitoring the chemical composition and/or impurity content of a sample or sample stream using absorption light spectroscopy. Specifically, in certain embodiments, this invention relates to the use of sample pressure variation to alter the magnitude of the absorption spectrum (e.g., wavelength-dependent signal) received for the sample, thereby obviating the need for a reference or ‘zero’ sample. Rather than use a reference or ‘zero’ sample, embodiments described herein obtain a spectrum/signal from a sample-containing cell at both a first pressure and a second (different) pressure.
Abstract:
A closed path infrared sensor includes an enclosure, a first energy source within the enclosure, at least a second energy source within the enclosure, at least one detector system within the enclosure and a mirror system external to the enclosure and spaced from the enclosure. The mirror system reflects energy from the first energy source to the at least one detector system via a first analytical path and reflects energy from the second energy source to the at least one detector system via a second analytical path. Each of the first analytical path and the second analytical path are less than two feet in length.
Abstract:
Systems and methods for measuring the isotope ratio of one or more trace gases and/or components of gas mixtures such as different gas species present in a gas mixture. The system includes a resonant optical cavity having two or more mirrors and containing a gas, the cavity having a free spectral range that equals the difference between frequencies of two measured absorption lines of different gas species in the gas, or of two different isotopes, divided onto an integer number. The system also includes a continuous-wave tunable laser optically coupled with the resonant optical cavity, and a detector system for measuring an absorption of laser light by the gas in the cavity. The detector system includes one of a photo-detector configured to measure an intensity of the intra-cavity light or both a photo-acoustic sensor configured to measure photo-acoustic waves generated in the cavity and a photo-detector configured to measure an intensity of the intra-cavity light.
Abstract:
A closed path infrared sensor includes an enclosure, a first energy source within the enclosure, at least a second energy source within the enclosure, at least one detector system within the enclosure and a mirror system external to the enclosure and spaced from the enclosure. The mirror system reflects energy from the first energy source to the at least one detector system via a first analytical path and reflects energy from the second energy source to the at least one detector system via a second analytical path. Each of the first analytical path and the second analytical path are less than two feet in length.
Abstract:
The present invention discloses a method for measuring an amount of an objective component to be measured in a sample, which comprises; preventing an electric charge in an atmosphere in a photometry chamber from transferring to the surface of a solution which generates light due to an energy variation of a substance induced by the objective component in the sample, measuring value of the light, and determining an amount of the objective component in the sample on the basis of the measured value thus obtained, and an instrument used for the method.According to the present invention, in measurement of an objective component in a sample using a spectrophotometer, problems such as between-day variation of signal values or increase of background value, etc. can be solved, and a trace component can be measured in high accuracy and high sensitivity.
Abstract:
A method and system are presented for use in optical processing of an article by VUV radiation. The method comprises: localizing incident VUV radiation propagation from an optical head assembly towards a processing site on the article outside the optical head assembly and localizing reflected VUV radiation propagation from said processing site towards the optical head assembly by localizing a medium, non-absorbing with respect to VUV radiation, in within the light propagation path in the vicinity of said site outside the optical head assembly. The level of the medium is controlled by measuring the reflected VUV radiation.
Abstract:
In a plasma processing apparatus that forms plasma from a process gas by supplying the process gas into a processing container and applying high-frequency power to an electrode provided inside the processing container on which a workpiece is placed and executes specific plasma processing on the processing surface of the workpiece, apparatus state parameter data indicating a state of the plasma processing apparatus are obtained through measurement executed by a parameter measuring instrument, optical data are obtained through measurement executed by an optical measuring instrument and electrical data are obtained through measurement executed by an electrical measuring instrument. A means for plasma leak judgment judges that a plasma leak has occurred if there is a fluctuation in the data.
Abstract:
The present invention discloses a method for measuring an amount of an objective component to be measured in a sample, which comprises; preventing an electric charge in an atmosphere in a photometry chamber from transferring to the surface of a solution which generates light due to an energy variation of a substance induced by the objective component in the sample, measuring value of the light, and determining an amount of the objective component in the sample on the basis of the measured value thus obtained, and an instrument used for the method. According to the present invention, in measurement of an objective component in a sample using a spectrophotometer, problems such as between-day variation of signal values or increase of background value, etc. can be solved, and a trace component can be measured in high accuracy and high sensitivity.