Abstract:
An annular optical device (100) includes an annular meso-optic (1) including an annulus (11) centered about an axis of revolution (A) and a secondary optical structure (2) substantially coaxial within the annulus (11). The secondary optical structure (2) and the annular meso-optic (1) are separated by a media (12) including a media refractive index that is lower than the refractive index of the secondary optical structure. The secondary optical structure (2) holds a specimen to be radiated by impinging electromagnetic radiation. Scattered radiation from the secondary optical structure (2) and within the annulus (11) of the annular meso-optic (1) is allowed into the annular meso-optic (1) if an angle of incidence of the scattered radiation exceeds a predetermined incidence threshold. The annular meso-optic (1) re-directs the scattered radiation to comprise re-directed radiation that is substantially parallel to the axis of revolution (A).
Abstract:
An optoelectronic device for measuring the water content in a plant element and an apparatus designed to evaluate and monitor in real time the state of hydration of the plant covers. The device includes an optoelectronic probe connected to a measurement module, the probe including: i) a first light source emitting at a wavelength corresponding to a strong water absorption band; ii) optionally, a second light source emitting at a wavelength close to the first source and weakly absorbed by water; and iii) a photo receiver having a spectral response that corresponds to the emission bands of the first light source or of the first and second light sources, the device including elements for modulating the average optical power emitted by the light source or sources at a defined frequency, and elements for synchronously detecting the light received by the photoreceiver.
Abstract:
The invention relates to an optical sensor device (100) for detecting target particles (1) at a contact surface (12) of a carrier (11), said sensor device comprising a light source (21, 22) for emitting an input light beam (L1) into the carrier (11) such that it is totally internally reflected and partially scattered by target particles (1) at the contact surface (12) into an output light beam (L2). The sensor device further comprises an optical system (30) for directing said output light beam (L2) onto a light detector (50), wherein a filter (32) in the optical system (30) suppresses the components (L2d) of totally internally reflected light. The detector therefore primarily measures the fraction of scattered light (L2s).
Abstract:
This invention relates to a device for determining the conversion power of conversion element, a method for performing these measurements and a method for producing pcLEDs with essentially the same color point applying said device and said method. The device comprises a light source (5), a sample holder (6) and a detector element (7), wherein the light source (5) illuminates the sample holder (6) with a primary light (41), the sample holder (6) is at least locally transparent for a primary light (41), suitable to mount the multitude of conversion elements (3) capable to partly convert the primary light (41) into a secondary light (42), and comprises suitable prevention means (62, 62a, 62b, 62c, 62d, 62e) to prevent a light guiding of the secondary light (42) from one mounted conversion element (3) through the sample holder (6) to another mounted conversion element (3), and the detector element (7) is suitable to measure the intensities of primary and secondary light (41, 42) for each conversion element (3) separately.
Abstract:
System and method for detecting and counting bacteria suspended in a biological fluid by means of light scattering measurements is provided. In accordance with the method of the invention the level of signal to noise of the measured intensities of light scattered by a sample of the biological fluid is significantly enhanced for forwardly scattered light within a range of scattering angles which are smaller compared to a predefined maximal scattering angle. The system of the invention includes a cuvette adapted to contain a sample of the biological fluid whose sidewalls and windows are suitably constructed and arranged to significantly reduce the level of reflected light obscuring the scattering patterns measured within the range of scattering angles considered.
Abstract:
The invention relates to a microelectronic sensor device and a method for making optical examinations at a carrier (11), e.g. for the detection of magnetic particles (1) at a contact surface (12) of the carrier (11) by frustrated total internal reflection (FTIR). A light source (21), particularly a laser light source, with a laser modulator (22) are used for emitting an input light beam (L1) into the carrier (11) which is modulated such that optical interferences with reflections (L1′) of the input light beam (L1) from the entrance window (14) or other components of the carrier (11) are reduced/minimized. This can for example be achieved by a pulsed on/off modulation in which the first relaxation minimum of a currently emitted pulse (PN) coincides in the light source (21) with the first relaxation maximum of a reflected pulse (PN-1′). By reducing the effect of interferences, the setup is less prone to disturbances from dimensional variations that are e.g. induced by thermal extension.
Abstract:
A scanning mechanism 6 moves an optical head 5 relative to a mount plate 2 in a scan direction, and light emitting diodes 3A, 3B mounted on the optical head 5 emit their respective beams of measurement light along the scan direction and onto two color regions TP3, TP3, respectively, of an immunochromatographic test strip mounted on the mount plate 2. Photodiodes 4A, 4B mounted on the optical head 5 receive respective beams of reflected light from the two color regions TP3, TP3 perpendicularly to colored lines on the immunochromatographic test strip, thereby implementing simultaneous measurement of color intensities of the colored lines formed in the two color regions TP3, TP3 of the immunochromatographic test strip.
Abstract:
The present invention is directed to the use of a light absorbing wall material to eliminate stray light paths in light-guiding structures, such as those used for HPLC absorbance detection. More specifically, the present invention relates to the use of carbon-doped Teflon® AF, or “black Teflon® AF,” for all or part of the walls of a light-guiding flowcell adapted for use in HPLC absorbance detection.
Abstract:
An electric rotating machine capable of lowering the temperature of a rotor disposed, wherein at least one of closed ventilation loops for cooling is formed, one of the loops constituting a ventilation passage communicating with an exhaust side through a heat source of the end of the generator to a cooler, thereby to supply cooling wind to the rotor after it passes through the cooler.
Abstract:
Described and claimed is an interchangeable tip-open cell fluorometer comprising a housing and a fluorometric probe tip interchangeably connected to the housing, the probe tip including a probe tip housing defining an open cell and enclosing a probe optical arrangement, the probe optical arrangement including an excitation source and a fluorescence detector wherein the excitation source is aimed directly into the fluorescence detector such that a sample can be fluorometrically detected. Also claimed is a method of using this interchangeable tip-open cell fluorometer for detecting fluorescent signals emitted by one or more fluorophores from samples from a natural or industrial water system. The fluorometer, when coupled with a controller, is capable of monitoring and optionally controlling an industrial process or system.