Abstract:
A lens module includes an optical element and an infrared absorbing filter covering on the optical element. The infrared absorbing filter includes an electrochromic substrate. The electrochromic substrate changes from colorlessness to blue and absorbs the infrared constituent of incoming light when a preset voltage is applied on the electrochromic substrate.
Abstract:
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.
Abstract:
A lens module includes an optical element and an infrared absorbing filter covering on the optical element. The infrared absorbing filter includes an electrochromic substrate. The electrochromic substrate changes from colorlessness to blue and absorbs the infrared constituent of incoming light when a preset voltage is applied on the electrochromic substrate.
Abstract:
A liquid crystal display device comprises: a liquid crystal display element comprising a pair of glass substrates facing to each other, transparent electrode patterns, each transparent electrode pattern being formed on a facing surface of each one of said pair of glass substrates film structures, each film structure including an oriented film and being formed on each one of said pair of glass substrates with covering said transparent electrode, and a liquid crystal layer held between the pair of glass substrates; and a light source that can radiate near infrared rays to said liquid crystal display element, and wherein at least one of said liquid crystal layer and said film structures include near infrared ray absorption material. A response time of the liquid crystal display device can be improved at a low temperature.
Abstract:
A photovoltaic array with improved thermal performance includes a photovoltaic array, an electro-optic shutter disposed on the photovoltaic array, and a control system connected to at least the electro-optic shutter. The control system, based upon input from a sensor, switches the electro-optic shutter between transmissive and reflective conditions so as to control exposure of light to the photovoltaic array.
Abstract:
The present invention relates to a multifunctional adhesive film that has at least one of a near IR absorption dye and/a color correction dye and a UV stabilizer, a plasma display panel filter including the same and a plasma display panel including the same.Since the multifunctional adhesive film does not require a layer that has a separate UV blocking function, it is possible to manufacture a thin type optical filter, and it is possible to improve the productivity and lower a cost by simplifying a process by an epoch-making structure simplification.
Abstract:
A backlight device (8) includes: a blue discharge lamp (9B) and a yellow discharge lamp (9RG) whose light-emission colors are different from each other and that emit light capable of being mixed into white light. A near infrared absorbing filter (near infrared absorbing portion) (10) that absorbs near infrared light is provided on an outer circumferential portion of the discharge lamp (9RG).
Abstract:
A protection filter for a liquid crystal display (LCD) includes a transparent substrate and a heat-blocking film comprising a metallic compound thin film and a transparent metallic thin film which are alternately formed on the transparent substrate.
Abstract:
An optical compensation member is provided and includes an alignment layer, and an optical anisotropic layer composed of liquid crystal molecules and provided on the alignment layer, wherein the alignment layer contains an additive which suppresses transmission of light in a specific wavelength range.
Abstract:
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.