Abstract:
Disclosed herein is a tunable wavelength optical transmission module, the wavelength of which can be tuned over the wide wavelength region of a C band and which can be implemented at a low price and, thus, can be applied to an optical network terminal. Bragg gratings having different grating periods are arranged in parallel or series and the temperatures of Bragg grating regions are then controlled, so that the wavelength of an optical signal can be tuned over a wide wavelength range through the small variation in temperature.
Abstract:
An optical digital-to-analog conversion is realized by employing either a continuous wave or pulsed laser optical signal. The laser optical signal is split into a plurality of mutually coherent optical beams, which are phase shift modulated by bits of a digital data sequence to be converted to an analog signal. The phase shift modulated optical beams are recombined to realize the desired digital-to-analog converted optical signal.
Abstract:
An arrangement (10) for efficiently generating tunable pulsed laser output at 8-12 microns. The arrangement (10) includes a laser (12), a first optical parametric oscillator (14) of unique design, and a second optical parametric oscillator (22). The first oscillator (14) is constructed with an energy shifting crystal (20) and first and second reflective elements (16) and (18) disposed on either side thereof. Energy from the laser (12) at a first wavelength is shifted by the crystal and output at a second wavelength. The second wavelength results from a secondary process induced by a primary emission of energy at a third wavelength, the third wavelength resulting from a primary process generated from the first wavelength in the crystal. Mirror coatings are applied on the reflective elements (16 and/or 18) for containing the primary emission and enhancing the secondary process. The second optical parametric oscillator (22) then shifts the energy output by the first OPO (14) at the second wavelength to the desired fourth wavelength.
Abstract:
An arrangement (10) for efficiently shifting energy received at a first wavelength and outputting the shifted energy at a second wavelength. The arrangement (10) includes a laser (12) and an optical parametric oscillator (14) of unique design. The oscillator (14) is constructed with a energy shifting crystal (20) and first and second reflective elements (16) and (18) disposed on either side thereof. Light from the laser (12) at a fundament frequency is shifted by the crystal and output at a second wavelength. The second wavelength is a primary emission and induces a secondary emission of energy in the crystal. A novel feature of the invention is a coating applied on the reflective elements (16 and/or 18) for minimizing the secondary emission. This constrains the energy to be output by the arrangement (10) at the wavelength of the desired primary emission. In the alternative, the arrangement (10) may be optimized to output one or more of the secondary emissions.
Abstract:
According to one embodiment, a sensor-equipped display device includes a scanning line, a signal line, a pixel switch, a pixel electrode, a first common electrode, a detection electrode, a current mirror circuit, and an integrator. The integrator includes an operational amplifier including an inverting input terminal and a noninverting input terminal.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optical communications. In one aspect, an optical circulator array includes a plurality of stacked three port circulators each having a respective first port of a first port array, a respective second port of a second port array, and a respective third port of a third port array, wherein each of the plurality of stacked three port circulators share optical components including: a first Wollaston prism coupled to the first port array, a first lens, a first half wave plate, a polarization dependent beam path separator, a second half wave plate, a second lens, a propagation direction dependent polarization rotation assembly, a second Wollaston prism coupled to the second port array, and a third Wollaston prism coupled to the third port array.
Abstract:
An optical module includes: an optical modulator that performs an optical modulation process by using electrical signals input from a plurality of terminals; and a flexible substrate that has flexibility and electrically connects the optical modulator and a predetermined connector to each other via a plurality of wiring patterns formed on first and second surfaces thereof. The flexible substrate includes: a first pad including a first conductor pattern connected, on the first surface, to a wiring pattern, a second conductor pattern formed on the second surface, and a through hole that connects the first conductor pattern and the second conductor pattern to each other; and a second pad including a third conductor pattern connected, on the second surface, to a wiring pattern, a fourth conductor pattern formed on the first surface, and a through hole that connects the third conductor pattern and the fourth conductor pattern to each other.
Abstract:
A stereoscopic display device is provided that enables stereoscopy for various viewing positions. A stereoscopic display device (1) includes: a display panel (14) configured to display images for a plurality of viewpoints, the images having parallax and being arranged regularly; a light beam convertor (11) disposed adjacent the front side of the display panel (14) configured to form virtual lenticular lenses by controlling a voltage, the lenticular lenses adapted to the images on the display panel (14) and being arranged at a certain interval; and a controller configured to control the display panel (14) and the light beam convertor (11). The controller changes the focal length of the virtual lenticular lenses formed by the light beam convertor (11) depending on the distance between the display panel (14) and a viewer.
Abstract:
The disclosure is directed at a waveguide sandwich which comprises a pair of host materials, each of the host materials housing a component waveguide. The component waveguides are then placed in physical contact with each other to form a composite waveguide thereby producing a waveguide sandwich.
Abstract:
A Mach-Zehnder (MZ) modulator made of semiconductor material and a method to drive the MZ-modulator are disclosed. The MZ-modulator includes a pair of arms to vary the phase of the optical beam propagating therein. One of the arms further provides the phase presetter that varies the phase of the optical beam by π. The arms are driven by modulation signals complementary to each other but with the DC bias equal to each other.