Abstract:
In a remote mirroring system, device, and method, a master storage unit stores information in a log and uses the information from the log to quickly resynchronize slave images following a failure in the master storage unit. Upon receiving a write request from a host, the master storage unit stores a write entry in the log. The write entry includes information that identifies a portion of the slave images that may be unsynchronized from the master image due to the write request. The master storage unit then proceeds to update the master image and the slave images. The log is preserved through the failure, such that the log is available to the master storage unit upon recovery from the failure. When the master storage unit is operational following the failure, the master storage unit resynchronizes the slave images to the master image by copying those portions of the master image indicated in the log to the slave images.
Abstract:
A data processing system is configured to store a plurality of data entities in volatile memories of multiple different computing devices. The data processing system comprises a first computing devicehaving a first volatile memory configured to store a first data entity; and a second computing device having a second volatile memory configured to store a copy of the first data entity. The first computing device is configured to perform: receiving an indication to update the first data entity; after receiving the indication, updating the first data entity in the first volatile memory, and providing to the second computing device an indication to update the copy of the first data entity; and providing an indication that the first data entity has been updated, after receiving information fromthe second computing device indicating that the copy of the first data entity has been updated in the second volatile memory.
Abstract:
A storage system is provided with a plurality of physical storage devices, a cache memory, a control device that is coupled to the plurality of physical storage devices and the cache memory, and a buffer part. The buffer part is a storage region that is formed by using at least a part of a storage region of the plurality of physical storage devices and that is configured to temporarily store at least one target data element that is to be transmitted to a predetermined target. The control device stores a target data element into a cache region that has been allocated to a buffer region (that is a part of the cache memory and that is a storage region of a write destination of the target data element for the buffer part). The control device transmits the target data element from the cache memory. In the case in which a new target data element is generated, the control device executes a control in such a manner that the new target data element has a high tendency to be stored for a buffer region in which the transmitted target data element has been stored and to which a cache region has been allocated.
Abstract:
If the first storage apparatus is suspended, it is determined which of the update number which the journal recently reflected in the second storage apparatus comprises and the update number which the journal recently reflected in the third storage apparatus comprises is the newer. It is determined, in the newer storage apparatus which is determined to comprise the newer update number, whether one or more differential journals from the journal comprising the update number next to the update number which is not determined to be the newer to the journal comprising the update number determined to be the newer exist or not. If the result of the determination is positive, from the newer storage apparatus to the previous storage apparatus which is not the newer of the second and the third storage apparatuses, one or more differential JNLs are copied. In the previous storage apparatus, one or more differential JNLs are reflected in order of the update numbers, to the data volumes in the previous storage apparatus.
Abstract:
Embodiments of the present invention relate to synchronously replicating data in a distributed computing environment. To achieve synchronous replication both an eventual consistency approach and a strong consistency approach are contemplated. Received data may be written to a log of a primary data store for eventual committal. The data may then be annotated with a record, such as a unique identifier, which facilitates the replay of the data at a secondary data store. Upon receiving an acknowledgment that the secondary data store has written the data to a log, the primary data store may commit the data and communicate an acknowledgment of success back to the client. In a strong consistency approach, the primary data store may wait to send an acknowledgement of success to the client until it receives an acknowledgment that the secondary has not only written, but also committed, the data.
Abstract:
A storage device system includes an information processing device, a first storage device equipped with a first storage volume, and a second storage device equipped with a second storage volume. The information processing device and the first storage device are communicatively connected to one another. Also, the first storage device and the second storage device are communicatively connected to one another. The information processing device is equipped with a first write request section that requests to write data in the first storage device according to a first communications protocol, and a second write request section that requests to write data in the second storage device according to a second communications protocol. The information processing device creates first data including a first instruction to be executed in the second storage device. The information processing device transmits to the first write request section a request to write the first data in the first storage volume according to the first communications protocol. When the first data written in the first storage volume is an instruction to the second storage device, the first storage device transmits to the second write request section a request to write the first data in the second storage volume according to the second communications protocol. The second storage device executes the first instruction set in the first data written in the second storage volume. The information processing device can use such an instruction to request to obtain the processing status of a first journal in said second storage device.