Abstract:
In a system for scanning a document (43), a light source (22) illuminates the document; an imager (24, 41, 41', 61, 62) receives light from the document and directs it toward a detector array (25) which produces a corresponding array of electrical signals. The imager has several optical properties that are useful either individually or in combination. The imager is telecentric and thereby ensures that image size and magnification are insensitive to object displacement along the optical axis (46, 46') and image brightness is uniform independent of object off-axis distance. An aspheric element (33) within the imager balances focus variation (82-81-83) within the depth of field with spherical aberration and thereby provide nearly uniform image resolution. A diffraction pattern (33'), carried by the imager, corrects for spectral dispersion which occurs when light passes (63) from air into a refractive material (61, 62). An imager with a reflecting surface (32, 33) provides a system that is subject to little or no chromatic aberration. A solid imager (61, 62) with multiple internal reflecting surfaces (32, 33, 42) in optical series (32-33-32-42), configured to include the previously mentioned optical properties, also provides for highly stable alignment of reflecting surfaces.
Abstract:
The present invention has as its object to provide a light source unit in which the relative portion of a detecting device and a condensing device is accurately determined, whereby the detecting device can reliably detect a laser beam, and a scanning optical apparatus using the same, and for this purpose, the present invention provides a scanning optical apparatus having a light source, a holding member for holding the light source, a deflecting device for deflecting light emitted from the light source, a detecting device for detecting the light deflected by the deflecting device, and a condensing lens for condensing the light incident on the detecting device, wherein the holding member positions the detecting device, and holds the condensing lens.
Abstract:
A reading pen for reading text has an elongate casing with a reading opening (3) formed in one end thereof, a printed circuit board (5) which is arranged inside the casing, light-emitting diodes (7a, 7b) arranged inside the reading opening and adapted to illuminate the text that is to be read, and a light-sensitive sensor (9) arranged inside the reading opening and adapted to read the illuminated text. The printed circuit board (5) has an end portion at said one end of the casing. The end portion essentially corresponds to the form of the casing. The light-emitting diodes (7a, 7b) and the light-sensitive sensor (9) are arranged on said end portion.
Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.
Abstract:
A device for reading graphic symbols impressed on a sheet, comprising light sources for illuminating the sheet, an optical reading system and an array of photo-electric sensors for generating electrical reading signals. The device is compact in structure and of small dimensions, so as to allow it to be mounted upon the head-carrying carriage of a printing machine or typewriter. The device makes it possible to create, in a particularly simple form, reading apparatus for facsimiles or for optical character recognition (OCR) reading apparatus for memorizing signatures, graphical symbols and drawings or mathematical symbols, or apparatus for copying documents.
Abstract:
A device for reading graphic symbols impressed on a sheet, comprising light sources for illuminating the sheet, an optical reading system and an array of photo-electric sensors for generating electrical reading signals. The device is compact in structure and of small dimensions, so as to allow it to be mounted upon the head-carrying carriage of a printing machine or typewriter. The device makes it possible to create, in a particularly simple form, reading apparatus for facsimiles or for optical character recognition (OCR) reading apparatus for memorizing signatures, graphical symbols and drawings or mathematical symbols, or apparatus for copying documents.
Abstract:
An image sensor (100) comprises a lens (4), a sensor (6) and a first casing (1). The lens (4) is configured to focus light irradiated toward an object to be read (30) from a direction tilted relative to the X-Z plane, and reflected by the object to be read (30). The sensor (6) is configured to receive the light focused by the lens (4). The first casing (1) is configured to contain or retain the lens (4) and the sensor (6) and to have, in a surface (1j) extending along a main scanning direction, a tilted portion having a length in a sub-scanning direction that decreases toward the object to be read (30).
Abstract:
An illumination apparatus includes: a rod-like light guide member that directs light emitted from a first light source and a second light source from an emission surface to an illuminated body while propagating the light by reflection surfaces; and a light blocking member including a second surrounding portion slidably covering another end of the light guide member, wherein the second surrounding portion includes: a light blocking portion protruding toward one end of the light guide member and covering the emission surface of the light guide member; and a cut-out portion adjacent to the light blocking portion and exposing the reflection surface of the light guide member.
Abstract:
An image sensor unit includes a sensor substrate on which a plurality of photoelectric conversion elements are mounted, a light source that includes light-emitting elements, for illuminating a document, a light guide that guides light from the light source from one end face and linearly illuminates the document, a rod lens array imaging reflected light from the document on the sensor substrate, and a frame holding each of these elements. The frame includes a spacer provided in proximity to the light source. The spacer includes a light shielding that covers the light source and a portion of the light guide.
Abstract:
A lens array includes a first lens row including first lenses arranged in a first direction, a second lens row including second lenses arranged in a direction substantially parallel with the first direction, a first boundary being a boundary between the first lenses adjacent to each other, a second boundary being a boundary between each of the first lenses and the second lens adjacent to the first lens, and a first join portion where the first boundary and the second boundary join each other. At the first joint portion, the first boundary and the second boundary contact each other with no step as seen in a plane that is substantially orthogonal to the first direction.