Abstract:
In a disclosed optical scanner, an optical axis adjustment is made by moving a circuit board on which a light emitting device open-type semiconductor laser is mounted along a base face of an optical box. For a high-quality optical scanning, the circuit board is attached to the base face of the optical box. The invention provides a light emitting element open-type in which a semiconductor laser is disposed in an optical box which is almost hermetically sealed with a cover to avoid adhesion of dusts, electrostatic destroy, and deterioration in picture quality.
Abstract:
A new technique is provided to manufacture a CIS module by employing an alignment-plate, a light-guide plate, and a resolution plate. The above plates can be selected to be pre-fabricated into one piece to reduce the number of components for the CIS module. The dimension of resolution definition structures of resolution plate determines the resolution of CIS module and allows only the reflect light from the image with a desired resolution to pass through. Consequently, it alleviates the butting difficulty in the convention butting operation to form a linear sensor array. Also, a signal reading technique is provided to improve the photo-response of the conventional photo-sensing device. Therefore, operation speed is increased and product performance is improved.
Abstract:
A modularized light-guiding apparatus and manufacturing method, which may make the light of a light source proceed at least twice light reflections of predetermined directions. The light-guiding apparatus includes a plurality of modularized reflection elements, which may be differentiated to several different types of reflection element. Each type of each reflection element all has substantially same adjoining device and edge size for providing to be adjoined and piled-up with another reflection element. But, the reflection element of different type individually has different number of reflection plane for providing the light to proceed different times of light reflection. It may determined the light reflection times and light-path length for the light-guiding apparatus, by choosing several different types of reflection element among plural reflection elements to proceed the piling-up for the light-guiding apparatus.
Abstract:
An apparatus and a method adapted to be used in manufacturing an image scanning apparatus for calibrating a reflective lens on a carriage are disclosed. A calibrating device has thereon a first set of three projective points from three point light beams and a first set of three calibrating points corresponding to three point light sources. The calibrating device further includes thereon a second set of three projective points and a second set of three calibrating points for matching each of the projective points on the calibrating device with a corresponding one of the calibrating points by adjusting an angle and a position of the reflective lens on the carriage so as to achieve a calibrating function.
Abstract:
The present invention relates to photosensitive chips for creating electrical signals from an original image, as would be found for example in a digital scanner, copier, facsimile machine, or other document generating or reproducing device. More specifically, the present invention relates to preferably providing a supplemental chip in each abutment region to enhance image quality.
Abstract:
A modularized light-guiding apparatus and manufacturing method, which may make the light of a light source proceed at least twice light reflections of predetermined directions. The light-guiding apparatus includes a plurality of modularized reflection elements, which may be differentiated to several different types of reflection element. Each type of each reflection element all has substantially same adjoining device and edge size for providing to be adjoined and piled-up with another reflection element. But, the reflection element of different type individually has different number of reflection plane for providing the light to proceed different times of light reflection. It may determined the light reflection times and light-path length for the light-guiding apparatus, by choosing several different types of reflection element among plural reflection elements to proceed the piling-up for the light-guiding apparatus.
Abstract:
A method of making an optical scanner is disclosed that includes light transmitting and receiving optical fibers to illuminate and scan an image to be copied, transmitted or stored.
Abstract:
Process and apparatus for fabricating an extended scanning or printing array in which plural smaller scanning or printing chips are bonded end-to-end onto the surface of a glass substrate having an opaque thermally and/or electrically conductive coating thereon, with the coating removed at discrete sites to allow a photocurable adhesive placed at the sites to be cured through exposure to UV light from underneath the substrate, the photocurable adhesive holding the chips in place while a chip bonding adhesive deposited on the conductive coating where the chips are located is cured to provide a permanent structure.
Abstract:
A method is disclosed for making a fiber optic array for use in an optical scanning device. The array includes a substrate and rows of optical fibers stacked on the substrate. The optical fibers are all of a predetermined diameter. In order to precisely space the fibers relative to each other, the fibers in the first row are arranged in grooves in the substrate, and each succeeding row of fibers is disposed on the fibers of the preceding row.
Abstract:
A lens array for reading information employed in a copying machine, a facsimile machine, etc. and a manufacturing method thereof, wherein a pillar lens is formed by cutting a spherical lens parallel to the direction of an optical axis, and a number of the pillar lenses are arranged in two layers, upper and lower layers and then fixed with a pair of frame members, thus effecting mass production of a very accurate lens array at a low cost.