Abstract:
An image reader includes a light source that irradiates light to a recording material on which an image is formed, a generation section that receives light reflected from the recording material and generates image information from the received light, and a processing section that extracts information corresponding to a window region of the recording material set in advance, as correction information, from the image information generated by the generation section when light from the light source is irradiated to the recording material on which the image is formed.
Abstract:
A oscillating member device comprises: an oscillation system containing of a oscillating member and an elastic support, a driver unit for supplying a driving force to the oscillation system according to a driving signal, a waveform generator for generating periodic signals at a prescribed frequency, a driving signal generator for generating the driving signals in accordance with the periodic signals and an amplitude control level, and a oscillating amplitude detector for detecting a oscillating amplitude of the oscillating member; and practicing a control loop for controlling the amplitude control level according to a difference between a target oscillating amplitude and a detected oscillating amplitude detected by the oscillating amplitude detector, and the gain thereof; the oscillating member device comprising a gain adjuster for adjusting a gain of the control loop, and the gain of the gain adjuster being set based on the amplitude control level in a state that the oscillating amplitude of the oscillating member is equal to a target oscillating amplitude.
Abstract:
A printer processor prints out two sheets of test prints by printing a test pattern on two recording sheets of different lengths. The test pattern consists of eight straight-linear lines that are parallel to a main scan direction or a sub scan direction of an exposure section. Dimensions of designated portions of the test pattern are measured on each of the test prints, to detect skew characteristics of the recording sheets, deviations of print starting positions in the main and sub scan directions and fluctuations in transport speed of the recording sheets. Based on the detected values, a skew correcting section, the exposure section and a conveyer device for the recording sheets are controlled to correct skew of the recording sheets, the print starting positions in the main and sub scan directions and the transport speed.
Abstract:
An optical scanner includes a light source unit configured to emit light; an optical system configured to cause the light emitted from the light source unit to scan an object so as to form an image on the object; and a control unit configured to control the light source unit. The light source unit includes a plurality of light emitting units arranged in a sub scanning direction, and the control unit controls the light source unit to emit light at different positions on the object by using either n (n: positive integer) light emitting units or n+1 light emitting units selected from among the plurality of light emitting units, according to a positional shift amount of the image in the sub scanning direction.
Abstract:
A method for achieving accurate page margins on a media and a duplex imaging apparatus thereof. The method comprises: detecting a leading edge position by an edge sensor and a first left-to-right position of the media by an alignment sensor in a first imaging path; imaging a first side of the media in a print zone of the duplex imaging apparatus; removing the media from the print zone and disposing the media in a second imaging path; detecting a leading edge position by the edge sensor and a second left-to-right position of the media by the alignment sensor; determining a carrier reset distance by calculating a difference between first and second left-to-right positions, and shifting a print image by a distance substantially equal to the carrier reset distance thereby achieving accurate page margins for imaging a second side of the media with the print image. In another embodiment, the first left-to-right position can be determined by feeding the media into a preset first left-to-right position.
Abstract:
A printer for printing on a medium on an endless belt by printer heads includes: a generator generating printing data for each printer head; a detector detecting time-series data for the meandering of the medium; a generator generating correction data preventing disorder of a printed image due to the meandering; and a controller operating each printer head according to the correction and printing data, wherein the correction-data generator selects a specific difference between factors in the time when the time-series and predetermined time-series data are related and newly generates correction data corresponding to the selected factor, a replacement section replaces a factor in the time corresponding to the specific factor of the reference time-series data with the specific factor, and the time-series-data detector has a stop stopping detection of the time-series data when the absolute change value of a physical value influencing meandering is a predetermined value or less.
Abstract:
An image forming apparatus which make it possible to acquire phase information related to phases of a recording sheet being conveyed using an inexpensive structure without increases in size. An image on a recording sheet P being conveyed is formed. The recording sheet P is irradiated with a laser beam. A speckle generated by the irradiation of the recording sheet P with the laser beam is scanned. Phase information about the recording sheet P is acquired based on a speckle 500 read this time and a speckle 600 read after a lapse of t seconds. Position of the image to be formed is adjusted based on the acquired phase information.
Abstract:
It is intended to provide an image forming apparatus and image forming method capable of obtaining a comparatively high-quality image output even under a correction mode that gives preference to processing time required for correction, and capable of suppressing interruption of image formation to the utmost under operational condition such that internal temperature changes continuously. There are saved last five detections of positional shift quantity under first correction mode that gives preference to correction accuracy for each temperature band. Under second correction mode that gives preference to processing time required for correction, there is calculated a difference of a value actually obtained through measurement and an average value of data history belonging to a target temperature band (#7 through #9). Furthermore, the difference is multiplied by a reliability coefficient of main scanning direction and that of sub scanning direction, respectively, to determine correction quantity (#10, #11). Thereby, excessive change of correction quantity is prevented.
Abstract:
It is intended to provide an image forming apparatus and image forming method capable of obtaining a comparatively high-quality image output even under a correction mode that gives preference to processing time required for correction, and capable of suppressing interruption of image formation to the utmost under operational condition such that internal temperature changes continuously. There are saved last five detections of positional shift quantity under first correction mode that gives preference to correction accuracy for each temperature band. Under second correction mode that gives preference to processing time required for correction, there is calculated a difference of a value actually obtained through measurement and an average value of data history belonging to a target temperature band (#7 through #9). Furthermore, the difference is multiplied by a reliability coefficient of main scanning direction and that of sub scanning direction, respectively, to determine correction quantity (#10, #11). Thereby, excessive change of correction quantity is prevented.
Abstract:
An apparatus to control color registration and image density using a single mark and method using the same. The image forming apparatus has an image carrying member for carrying thereon an image having a plurality of colors. The image carrying member is configured to move in a first direction substantially perpendicular to a second direction, and a plurality of color marks having different densities are placed on the image carrying member for controlling respective registrations and toner densities of the color marks. One of said color marks includes a polygon having a first side which is not parallel to said first and second directions.