Abstract:
A compressor is provided and may include a shell, a compression mechanism, a motor, and a diagnostic system that determines a system condition. The diagnostic system may include a processor and a memory and may predict a severity level of the system condition based on at least one of a sequence of historical-fault events and a combination of the types of the historical-fault events.
Abstract:
A current control module generates a voltage request based on a d-axis current (Idr) demand. A switching control module controls a motor based on the voltage request and generates an out-of-volts (OOV) signal based on a comparison of the voltage request and an available voltage. An Idr injection module generates the Idr demand based on a direct current (DC) bus voltage, a rotational speed, and a demanded torque and selectively applies a first adjustment to the Idr demand. The Idr injection module identifies whether an improvement resulted from the first adjustment, wherein the improvement is identified based on at least one of (i) a measured current of the motor and (ii) the OOV signal. The Idr injection module selectively applies a second adjustment to the Idr demand based on whether the improvement is identified.
Abstract:
A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode.
Abstract:
A power factor correction (PFC) system includes a direct current (DC) module, an error control module, an offset module, and a duty cycle control module. The DC module determines an average current value based on a plurality of current values over at least one cycle of an input alternating current (AC) line signal of the PFC system. The error control module generates an error signal based on the average current value. The offset module offsets a desired instantaneous current based on the error signal. The duty cycle control module controls at least one duty cycle of switches of the PFC system based on the offset desired instantaneous current.
Abstract:
A power factor correction (PFC) system includes a period determination module, a frequency generation module, an angle generation module, a signal generation module, and an angle correction module. The period determination module determines a period of an input alternating current (AC) line signal based on a time between rising edges of the input AC line signal. The frequency generation module generates a frequency based on the period. The angle generation module generates an angle based on the frequency. The signal generation module generates a sinusoidal reference signal based on the frequency and an adjusted angle. The angle correction module generates the adjusted angle based on the angle and based on a comparison of a falling edge of the sinusoidal reference signal, the period, and a rising edge of the input AC line signal.
Abstract:
A compressor may include a shell assembly defining suction and discharge pressure regions, first and second scroll members disposed within the shell assembly, and a capacity modulation assembly. The first scroll member may include a first end plate defining a discharge passage, a biasing passage, a modulation port, a first spiral wrap extending from a first side of the first end plate, and an annular hub extending from a second side of the first end plate. The second scroll member may include a second spiral wrap meshingly engaged with the first spiral wrap forming a suction pocket in communication with the suction pressure region, intermediate compression pockets, and a discharge pocket in communication with the discharge passage. A first intermediate compression pocket may be in communication with the biasing passage and a second intermediate compression pocket may be in communication with the modulation port.
Abstract:
A compressor may include first and second scroll members and first and second pistons. The first scroll member includes a first end plate and a first scroll wrap. The second scroll member includes a second end plate and a second scroll wrap that is intermeshed with the first scroll wrap to define moving fluid pockets. The second end plate may include a first and second passages, first and second recesses, and first and second ports extending through the second end plate and communicating with at least one of the pockets. The first piston may be disposed in the first recess and movable between first and second positions controlling communication between the first passage and the first port. The second piston may be disposed in the second recess and movable between first and second positions controlling communication between at least one of the pockets and said second passage.
Abstract:
An apparatus is provided and may include a compression mechanism, a valve plate including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and a second position engaging the valve plate. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a smaller volume than the other of the chambers.
Abstract:
A compressor including a shell, a compression mechanism disposed within the shell, a motor actuating the compression mechanism, and a terminal body secured to the shell, may further include at least one conductor pin extending through the terminal body and a fence disposed around the terminal body and secured to the shell. A plug assembly having an inner core surrounded by an outer body includes at least one electrical receptacle housed by the inner core for selective electrical communication with the at least one conductor pin. A seal may be integrally formed with the outer body and may engage the fence when the at least one electrical receptacle is in electrical communication with the at least one conductor pin.
Abstract:
An apparatus is provided and may include a compression mechanism, a valve plate including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and a second position engaging the valve plate. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a smaller volume than the other of the chambers.