OPO Laser Mid-IR Wavelength Converter
    121.
    发明申请
    OPO Laser Mid-IR Wavelength Converter 有权
    OPO激光中红外波长转换器

    公开(公告)号:US20100238957A1

    公开(公告)日:2010-09-23

    申请号:US12792838

    申请日:2010-06-03

    CPC classification number: H01S3/302 G02F1/39 H01S3/06716 H01S3/094003

    Abstract: A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 μm. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.

    Abstract translation: 提供一种波长转换器,其包括耦合到光参量振荡器(OPO)晶体的硫化砷(As-S)硫族化物玻璃光纤和使用耦合到As-S光纤的OPO晶体的激光系统。 OPO从泵浦激光器接收泵浦激光辐射,并以比泵浦激光辐射更长的波长发射激光辐射。 从OPO发射的激光辐射被输入到As-S光纤中,其进而将输入波长从OPO转换成期望的波长,例如超过约4.4μm的波长。 在示例性实施例中,OPO包括周期性极化的铌酸锂(PPLN)晶体。 As-S纤维可以包括任何合适类型的光纤,例如常规的芯包层光纤,光子晶体光纤或微结构纤维。

    OPO MID-IR WAVELENGTH CONVERTER
    123.
    发明申请
    OPO MID-IR WAVELENGTH CONVERTER 有权
    OPO中红外波长转换器

    公开(公告)号:US20100080252A1

    公开(公告)日:2010-04-01

    申请号:US12409799

    申请日:2009-03-24

    CPC classification number: H01S3/302 G02F1/39 H01S3/06716 H01S3/094003

    Abstract: A wavelength converter comprising an arsenic sulfide (As—S) chalcogenide glass fiber coupled to an optical parametric oscillator (OPO) crystal and a laser system using an OPO crystal coupled to an As—S fiber are provided. The OPO receives pump laser radiation from a pump laser and emits laser radiation at a wavelength that is longer than the pump laser radiation. The laser radiation that is emitted from the OPO is input into the As—S fiber, which in turn converts the input wavelength from the OPO to a desired wavelength, for example, a wavelength beyond about 4.4 μm. In an exemplary embodiment, the OPO comprises a periodically poled lithium niobate (PPLN) crystal. The As—S fiber can include any suitable type of optical fiber, such as a conventional core clad fiber, a photonic crystal fiber, or a microstructured fiber.

    Abstract translation: 提供一种波长转换器,其包括耦合到光参量振荡器(OPO)晶体的硫化砷(As-S)硫族化物玻璃光纤和使用耦合到As-S光纤的OPO晶体的激光系统。 OPO从泵浦激光器接收泵浦激光辐射,并以比泵浦激光辐射更长的波长发射激光辐射。 从OPO发射的激光辐射被输入到As-S光纤中,其进而将输入波长从OPO转换成期望的波长,例如超过约4.4μm的波长。 在示例性实施例中,OPO包括周期性极化的铌酸锂(PPLN)晶体。 As-S纤维可以包括任何合适类型的光纤,例如常规的芯包层光纤,光子晶体光纤或微结构纤维。

    Low loss chalcogenide glass and process for making same using arsenic monochalcogenide
    125.
    发明授权
    Low loss chalcogenide glass and process for making same using arsenic monochalcogenide 有权
    低损耗硫族化物玻璃及其制备方法

    公开(公告)号:US07418835B2

    公开(公告)日:2008-09-02

    申请号:US10824836

    申请日:2004-04-15

    CPC classification number: C03C13/043 C03C3/321 G02B6/102 Y10S65/15

    Abstract: This invention pertains to a chalcogenide glass of low optical loss that can be on the order of 30 dB/km or lower, and to a process for preparing the chalcogenide glass. The process includes the steps of optionally preparing arsenic monochalcogenide precursor or the precursor can be provided beforehand; dynamically distilling the precursor in an open system under vacuum from a hot section to a cold section to purify same; homogenizing the precursor in a closed system so that it is of a uniform color; disposing the distilled or purified precursor and at least one chalcogenide element at a hot section of an open distillation system; dynamically distilling under vacuum in an open system so that the precursor and the at least one chalcogenide element are deposited at a cold section of the open system in a more purified state; homogenizing the precursor and the at least chalcogenide element in a closed system while converting the precursor and the at least one chalcogenide element from crystalline phase to glassy phase.

    Abstract translation: 本发明涉及低光损耗的硫属化物玻璃,其数量级可以在30dB / km以下,以及制备硫族化物玻璃的方法。 该方法包括任选地制备砷单体前体的步骤,或者可以预先提供前体; 在开放系统中在真空下从热部分到冷部分动态蒸馏前体以净化其; 在封闭系统中使前体均匀化,使其具有均匀的颜色; 将蒸馏或纯化的前体和至少一种硫族化物元素置于开放蒸馏系统的热段; 在开放系统中在真空下动态蒸馏,使得前体和至少一种硫族化物元素以更纯化的状态沉积在开放系统的冷部分; 在将前体和至少一种硫属元素元素从结晶相转化为玻璃相的同时使封闭体系中的前体和至少硫属元素元素均化。

    Method for coating small particles
    127.
    依法登记的发明

    公开(公告)号:USH2219H1

    公开(公告)日:2008-07-01

    申请号:US11239433

    申请日:2005-09-20

    Abstract: The coating method includes the steps of dissolving coating precursor(s) in a solvent to form a precursor solution: adding with mixing a miscible diluent to the precursor solution to form a coating solution; admixing solid particles to the coating solution to form a coating slurry, with the particles surrounded with the coating solution; spraying the coating slurry to form droplets containing at least one particle; passing the droplets through a drying zone where the droplets are dried and form dry particles coated with a coating material formed from the coating precursor(s); heat-treating the coating material on the particles emanating from the drying zone to remove volatile matter on the coating material, to improve integrity of the coating material and/or to effect another objective; and collecting dry coated particles.

    Gas filled hollow core chalcogenide photonic bandgap fiber Raman device and method
    128.
    发明授权
    Gas filled hollow core chalcogenide photonic bandgap fiber Raman device and method 有权
    气体填充中空硫族化合物光子带隙光纤拉曼装置及方法

    公开(公告)号:US07327928B2

    公开(公告)日:2008-02-05

    申请号:US11532148

    申请日:2006-09-15

    Abstract: A hollow core photonic bandgap chalcogenide glass fiber includes a hollow core for passing light therethrough, a Raman active gas disposed in said core, a microstructured region disposed around said core, and a solid region disposed around said microstructured region for providing structural integrity to said microstructured region. A coupler can introduce at least one light signal into the hollow core of the chalcogenide photonic bandgap fiber. The method includes the steps of introducing a light beam into a hollow core chalcogenide photonic bandgap glass fiber filled with a Raman active gas disposed in the core, conveying the beam through the core while it interacts with the gas to form a Stokes beam of a typically higher wavelength, and removing the Stokes beam from the core of the fiber.

    Abstract translation: 中空核光子带隙硫族化物玻璃纤维包括用于使光通过的中空芯,设置在所述芯中的拉曼活性气体,设置在所述芯周围的微结构化区域,以及设置在所述微结构化区域周围的固体区域,用于向所述微结构化 地区。 耦合器可以将至少一个光信号引入到硫族化物光子带隙光纤的中空芯中。 该方法包括以下步骤:将光束引入填充有设置在芯中的拉曼活性气体的中空核心硫族化物光子带隙玻璃纤维中,在与气体相互作用的同时将光束输送通过芯体,以形成典型的斯托克斯光束 更高的波长,并从纤芯的核心去除斯托克斯光束。

Patent Agency Ranking