Abstract:
A method and apparatus for enabling uplink beamforming transmit diversity is provided. The method may include receiving, by a wireless communications device (WCD), a beamforming weight vector in response to transmission by the WCD of two or more pilot channels, applying the received beamforming weight vector to at least one of a first of the two or more pilot channels, one or more data channels, or one or more control channels, and transmitting, using two or more antennas, at least one of the one or more data channels or at least one of the one or more control channels, wherein the number of pilot channels is greater than or equal to the number of antennas.
Abstract:
A system and method enable handover from a DC-HSUPA-capable node in a cellular wireless network to a non-DC-HSUPA-capable node. According to various aspects of the present disclosure, a handover may implement a legacy serving cell change procedure or an enhanced serving cell change procedure. In either case, signaling from the network to user equipment includes information to enable the user equipment to change or remove an Active Set when undergoing a handover from a cell with two uplink carriers and accordingly two Active Sets, to a cell with one uplink carrier and accordingly one Active Set.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a plurality of uplink carriers are utilized in a cellular communications system. In an aspect of the disclosure, a wireless terminal configured for use in a cellular network transmits an uplink with a plurality of uplink carriers including an anchor carrier and a secondary carrier, and receives a downlink with a plurality of downlink carriers. Here, the wireless terminal provides feedback information, such as a channel quality indicator and an acknowledgment, corresponding to the plurality of downlink carriers, on an uplink channel on each of respective carriers in a subset of the plurality of uplink carriers.
Abstract:
A method and apparatus provide hybrid automatic repeat request (HARQ) feedback corresponding to the status of multiple downlink carriers, with or without MIMO being configured. Here, for at least some configurations, with respect to the selection of HARQ feedback symbols, the downlink carriers are grouped into groups of one or two carriers such that HARQ feedback symbol code books that were previously implemented in conventional HSDPA or DC-HSDPA systems may be utilized. That is, after encoding a data stream, HARQ feedback symbols selected from a plurality of code books configured for groups of one or two of the downlink carriers are utilized to modulate an uplink channel. The modulation or channelization may be accomplished with dual channelization codes or a single channelization code with a reduced spreading factor to insert two symbols into a single time slot.
Abstract:
A system and method enable handover from a DC-HSUPA-capable node in a cellular wireless network to a non-DC-HSUPA-capable node. According to various aspects of the present disclosure, a handover may implement a legacy serving cell change procedure or an enhanced serving cell change procedure. In either case, signaling from the network to user equipment includes information to enable the user equipment to change or remove an Active Set when undergoing a handover from a cell with two uplink carriers and accordingly two Active Sets, to a cell with one uplink carrier and accordingly one Active Set.
Abstract:
A system and method enable wireless user equipment (UE) to undergo a serving radio network subsystem (SRNS) relocation to a radio network controller (RNC) that does not support a fast dormancy feature while maintaining synchronization with the packet-switched domain of the core network. The UE is made aware of whether the target RNC supports the fast dormancy feature by way of an indication provided to the UE in a reconfiguration message provided by the source RNC, that is, the RNC to which the UE was connected prior to the SRNS relocation. In this way, the UE can behave accordingly whether or not the target RNC supports the fast dormancy feature.
Abstract:
A method for using a flexible size radio link control (RLC) protocol data unit (PDU) on an uplink is described. A request for an RLC PDU is received from a medium access control (MAC) layer. Radio conditions for a first uplink carrier and a second uplink carrier are determined. A size of the RLC PDU is selected based on the radio conditions. The RLC PDU is generated. The RLC PDU is sent to the MAC layer.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.
Abstract:
A method for wireless communications is provided. The method includes generating two or more uplink carrier signals across a wireless network and generating at least one active signal set for the wireless network. The method also includes generating one or more secondary active signal sets in accordance with the two or more uplink carrier signals to facilitate communications across the wireless network.
Abstract:
Systems and methods for effectuating a signal carrier configuration are disclosed. In one embodiment, the method comprises receiving an order, determining a signal carrier on which the order was received, determining a signal carrier configuration based at least in part on the order and the determined signal carrier, and changing the state of one or more signal carriers to effectuate the signal carrier configuration.