Abstract:
A process and apparatus that enable continual self-adaptation of dynamic transmission devices (saSTDs), allow "smart" filtering of information for transmission from one element to another within a network of interacting elements, such as a "neural network". An adaptation algorithm (MapSA) incorporated in STDs allows multiple parameters of STDs (which determine its filtering properties) to continuously adapt simultaneously and interdependently. In this manner, complex correlations can be established between the parameters in all STDs within a network of interacting elements. The process according to the invention therefore establishes unique patterns of connection parameters within the network which in turn dictates a novel sequence of information processing steps by the network.
Abstract:
Disclosed is a process for obtaining hybridoma cell lines which produce human antibodies capable of binding to the hepatitis B virus surface antigen (HBVsAg), as well as the hybridoma cell lines, and antibodies produced by the cell lines. Also disclosed are various uses of said antibodies in the prevention and treatment of HBV infection. Peripheral blood lymphocytes obtained from human donors having a high titer of anti HBVsAg antibodies are engrafted into normal strains of mice which were lethally irradiated and radioprotected with SCID bone marrow. After immunization of such chimeric mice with HBVsAg, human cells are obtained from the mice spleens and fused in vitro with heteromyeloma cells to generate hybridomas secreting human antibodies having a high affinity and specificity to HBVsAg.
Abstract:
The present invention relates to a process for the resolution of DL-racemic mixtures of compounds which crystalize in the form of a conglumerate. Both, the D and L-enantiomers are obtained according to the invention in a industrially feasable process by adding chiral enantioselective polymers to the supersaturated solution of the racemat to inhibit crystalization of one enantiomer. Next a DL-racemic mixture of said compound is suspended in about twice the amount of the crystallized enantiomer. Consequently, the opposite enantiomer could be recovered by said suspension by physical separation.
Abstract:
Nanotubes of transition metal chalcogenides as long as 0.2-20 microns or more, perfect in shape and of high crystallinity, are synthesized from a transition metal material, e.g., the transition metal itself or a substance comprising a transition metal such as an oxide, water vapor and a H 2 X gas or H 2 gas and X vapor, wherein X is S, Se or Te, by a two-step or three-step method. The transition metal chalcogenide is preferably WS 2 or WSe 2 . Tips for scanning probe microscopy can be prepared from said long transition metal chalcogenide nanotubes.
Abstract:
Memory efficient variants of public key encryption and identification schemes for smart card applications with severely limited RAM without using dedicated coprocessors. The variants replace the memory-intensive modular multiplication operation z = x*y (mod n) by a new randomized multiplication operation z' = x*y + r*n , where r is a randomly chosen integer in a suitable range [0,b], and a double convolution process to compute z'is used. Method and apparatus are described.
Abstract:
Disclosed is a process for obtaining hybridoma cell lines which produce human antibodies capable of binding to the hepatitis B virus surface antigen (HBVsAg), as well as the hybridoma cell lines, and antibodies produced by the cell lines. Also disclosed are various uses of said antibodies in the prevention and treatment of HBV infection. Peripheral blood lymphocytes obtained from human donors having a high titer of anti HBVsAg antibodies are engrafted into normal strains of mice which were lethally irradiated and radioprotected with SCID bone marrow. After immunization of such chimeric mice with HBVsAg, human cells are obtained from the mice spleens and fused in vitro with heteromyeloma cells to generate hybridomas secreting human antibodies having a high affinity and specificity to HBVsAg.
Abstract:
A method for determining the efficacy of a therapeutic agent, in vitro, for a cancer expressing or overexpressing an oncogene product is described. The method is particularly useful for determining the efficacy of therapeutic agents that have a binding affinity for cancer that express HER-2/neu. N24, N28 and N29 monoclonal antibodies are described which have been identified by this method. One or more of these antibodies can be used as a therapeutic agent in the treatment of breast, stomach, ovarian or salivary cancers.