Abstract:
A golf ball includes a core including a thermoplastic inner core and a thermoset outer core layer. The inner core has a surface hardness of about 40 to 80 Shore C and a center hardness of about 30 to 75 Shore C. The center hardness is less than the surface hardness to define a positive hardness gradient. A cover is formed over the core and includes an inner cover layer and an outer cover layer. The thermoplastic inner core includes a highly-neutralized ionomer formed from a copolymer of ethylene and an α,β-unsaturated carboxylic acid, an organic acid or salt thereof, and sufficient cation source to neutralize the acid groups of the copolymer by 80% or greater. The outer core layer comprises a polybutadiene rubber and has a positive hardness gradient of less than 25 Shore C.
Abstract:
A golf ball includes a composition producing a unique visible effect to enhance a performance parameter of the golf ball. The golf ball includes a color-shifting cover surrounding a core. The color-shifting cover includes a cover material mixed with a colorant. The cover material includes at least one of a thermoset polyurethane, cast urethane, or ionomer material. The colorant includes one or more of a flake, pigment, or dye. The color-shifting cover includes a visible shift in color based on a change in at least one of incidence of light, temperature, or pressure.
Abstract:
Golf ball comprising one or more layers and/or indicia formed from a fluorescent composition comprising: a base polymer; and a colorant; wherein the colorant is a small-molecule ionic isolation lattice formed from one or more fluorescent dye and one or more cyanostar macrocycles. The one or more fluorescent dyes may include at least one dye selected from xanthenes, oxazines, styryls, cyanines, trianguleniums, or mixtures thereof. The colorant may be a dispersion of the small-molecule ionic isolation lattice in a carrier medium or a powder. In particular embodiments, at least one of the one or more layers is a cover layer and/or a coating layer.
Abstract:
Golf ball incorporating layer(s) of a mixture consisting of: i) ionomer(s); ii) ethylene propylene rubber(s)(EPR(s)); iii) polymeric epoxy crosslinker(s); and iv) compatibilizing polymer(s). The ionomer(s) and EPR(s) may be included in a blend in a wt % ratio of from about 85:15 to 55:45; the at least one polymeric epoxy crosslinker and compatibilizing polymer may be included in amounts, based on 100 parts of the blend, of from about 2.0 to about 10.0 parts; and from about 1.0 to about 10.0 parts, respectively. Each ionomer, EPR, polymeric epoxy crosslinker, and compatibilizing polymer has a density less than 1.0 g/cm3. The mixture is melt processable/moldable without meanwhile sacrificing target CoR, DCM compression, Shore D hardness, and Shore C hardness.
Abstract:
Golf ball comprising layer(s) comprised of a mixture of: (a) low molecular weight acid-containing wax(es); (b) non-acid-polymer(s) including at least one low molecular weight non-acid wax such as high density oxidized polyethylene homopolymers; ethylene maleic anhydride copolymers; polypropylene maleic anhydride copolymers; polypropylene homopolymers; ethylene-vinyl acetate copolymers; high density oxidized homopolymers; oxidized copolymers; polyethylene micronized waxes; polytetrafluoroethylene micronized waxes; emulsifiable low molecular weight non-acid waxes; non-emulsifiable low molecular weight non-acid waxes; and/or chemically modified low molecular weight non-acid waxes; and (c) organic acid(s) or salt thereof. Molecular weight of each low molecular weight acid-containing wax is about 500 to 7000, or up to 30,000. Interactions between components (a), (b), and (c) advantageously produce layer of ionomeric material having heat stability, processability, and well-retained durability, adhesion, CoR, compression and targeted feel without need for blending high and low molecular weight acid-containing polymer(s).
Abstract:
Multi-layered golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) made from a foam or metal-containing composition, or it has a hollow shell construction, and the outer core layer is made of a thermoplastic composition. Preferably, the thermoplastic composition comprises: a) ethylene acid copolymer, b) plasticizer, and c) cation source. A fatty acid ester such as ethyl oleate is preferably used as the plasticizer. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency at given compressions.
Abstract:
A golf ball including a core; an inner cover layer formed from a first thermoplastic composition and having a thickness of about 0.005 inches to 0.40 inches and a surface hardness of about 60 Shore D or greater; and an outer cover layer formed from a thermoplastic polyurethane material and having a thickness of about 0.01 inches to 0.075 inches and a surface hardness of about 60 Shore D or less. The thermoplastic composition has a first melt flow index at 280° C. under a 10-kg load of less than about 35 g/10 min and a second melt flow index at 265° C. under a 5-kg load of less than about 10 g/10 min.
Abstract:
Golf ball comprising layer(s) comprised of plasticized neutralized acid polymer composition consisting of mixture of: (a) low molecular weight acid-containing wax(es); (b) non-acid-polymer(s) including at least one low molecular weight non-acid wax such as high density oxidized polyethylene homopolymers; ethylene maleic anhydride copolymers; polypropylene maleic anhydride copolymers; polypropylene homopolymers; ethylene-vinyl acetate copolymers; high density oxidized homopolymers; oxidized copolymers; polyethylene micronized waxes; polytetrafluoroethylene micronized waxes; emulsifiable low molecular weight non-acid waxes; non-emulsifiable low molecular weight non-acid waxes; and/or chemically modified low molecular weight non-acid waxes; (c) organic acid(s) or salt thereof; and (d) plasticizer(s). Molecular weight of each low molecular weight acid-containing wax is about 500 to 7000, or up to 30,000. Interactions between components (a), (b), (c) and (d) advantageously produce layer of ionomeric material having heat stability, processability, and well-retained durability, adhesion, CoR, compression and softer feel without need for blending high and low molecular weight acid-containing polymer(s).
Abstract:
Multi-layered golf balls containing a three-layered cover assembly are provided. For example, a cover assembly having an inner cover, intermediate cover, and outer cover layer may be prepared. At least one of the cover layers is formed from a thermoplastic composition that preferably comprises: a) thermoplastic non-acid polymer, and b) plasticizer. A fatty acid ester such as ethyl oleate is preferably used as the plasticizer. Suitable non-acid polymers include, for example, polyesters, polyamides, polyolefins, and polyurethanes. The cover assembly has good impact durability and helps provide the ball with relatively high resiliency at given compressions.
Abstract:
Multi-layered golf balls having at least one layer made of a polyamide composition containing a plasticized polyamide are provided. In one preferred version, the polyamide composition consists essentially of a polyamide and plasticizer selected from the group consisting of polytrimethylene ether glycol and polytrimethylene ether glycol benzoate and monomers, oligomers, copolymers and blends thereof. Blends of plasticized polyamides and ethylene acid copolymer ionomers also can be prepared. The golf ball includes a core having at least one layer and a cover having at least one layer. The polyamide composition may be used to form any core, cover, or other layer in the golf ball. The polyamide compositions have a good combination of properties including Coefficient of Restitution (COR) and compression.