Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a band including sensors, a controller coupled to the sensors, an energy storage device, a connector configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to manage power consumption of the band during a first power mode and a second mode. The band can be configured as a wearable communications device and sensor platform.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a wearable band including sensors, a controller coupled to the sensors, an energy storage device, a power port configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to control an application of power to one or more components of the wearable band in one or more power modes. The band can be configured as a wearable communications device and sensor platform.
Abstract:
A wellness system including a personal wearable data-capable band is described. In some examples; a wellness system may include an aggregation engine configured to aggregate user activity data from sources, a feedback engine configured to process the user activity data, the feedback engine operable to communicate a feedback notification to a source device including at least one of the sources, and a user interface configured to display a graphical representation associated with an aggregate value determined from the user activity data and the feedback notification. In other examples, a method using a wellness system may include receiving user activity data from sources, processing the user activity data using an aggregation engine to determine an aggregate value, generating a graphical representation using the aggregate value, and displaying the graphical representation using a user interface.
Abstract:
Spatial and temporal vector analysis in wearable devices using sensor data are described, including evaluating a motion to determine motion signals, the motion being evaluated using data provided by one or more sensors in data communication with a wearable device, isolating motion signals into one or more motion sub-signals, determining a spatial vector and a temporal vector associated with each of the one or more motion sub-signals, and transforming the spatial vector and the temporal vector into a data structure to be used by an application configured to analyze the data structure and to generate content associated with the motion.
Abstract:
A data-capable band for medical diagnosis, monitoring, and treatment is described, including one or more sensors configured to gather data associated with diagnosis, monitoring or treatment of a medical condition, an application configured to determine the medical condition using the data gathered by the sensors, a memory configured to store the data and the application, and a notification facility configured to provide an array of notifications in relation to the monitoring and treatment of the medical conditions. The notifications may be alarms, may be designed to prompt movement, or may be associated with a drug regimen.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a wearable band including sensors, a controller coupled to the sensors, an energy storage device, a power port configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to control an application of power to one or more components of the wearable band in one or more power modes. The band can be configured as a wearable communications device and sensor platform.
Abstract:
A wellness system including a personal wearable data-capable band is described. In some examples, a wellness system may include an aggregation engine configured to aggregate user activity data from sources, a feedback engine configured to process the user activity data, the feedback engine operable to communicate a feedback notification to a source device including at least one of the sources, and a user interface configured to display a graphical representation associated with an aggregate value determined from the user activity data and the feedback notification. In other examples, a method using a wellness system may include receiving user activity data from sources, processing the user activity data using an aggregation engine to determine an aggregate value, generating a graphical representation using the aggregate value, and displaying the graphical representation using a user interface.
Abstract:
A strap band including a flexible wire bus having electrodes and wires coupled with the electrodes is described. The strap band may be coupled with a device that includes circuitry to drive signals on electrodes and receive signals from pickup electrodes. Driven electrodes are coupled with drive signals at different frequencies that may be varied to increase or decrease signal penetration depth to sense different body structures positioned at different depths in a body portion be sensed. Different frequencies for different types of measurements may be selected to optimize sensing different biometric parameters, such as bio-impedance, galvanic skin response, hear rate, respiration, heart rate variability, hydration, inflammation, stress, and arousal in sympathetic nervous system at different depths (e.g., layers or strata) in the body portion, for example. A first set of driven/pickup electrodes may sense different biometric parameters than a second set of driven/pickup electrodes.
Abstract:
Embodiments of the invention relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable computing devices for facilitating health and wellness-related information. More specifically, disclosed are electrodes and methods to determine physiological states using a wearable device (or carried device) and one or more sensors that can be subject to motion. In one embodiment, a method includes receiving a sensor signal including data representing physiological characteristics in a wearable device from a distal end of a limb and a motion sensor signal. The method includes decomposing at a processor the sensor signal to determine physiological signal components. A physiological characteristic signal is generated that includes data representing a physiological characteristic, which can form a basis to determine a physiological state based on, for example, bioimpedance signals originating from the distal end of the limb.
Abstract:
Techniques associated with service aware software architecture in a wireless device ecosystem are described, including generating, by an application, an intended event, discovering, using an operating system comprising a service discovery module, one or more available services on a device in data communication with the application, and selecting, using the operating system, a preferred service configured to provide an output associated with the intended event.