Abstract:
Representative embodiments described herein set forth techniques for provisioning device configuration files and electronic Subscriber Identity Modules (eSIMs) to mobile devices. One embodiment sets forth a method for installing an eSIM at a mobile device. According to some embodiments, the method includes the steps of (1) receiving a first request to obtain the eSIM, (2) issuing, to an eSIM server, a second request for the eSIM, (3) receiving an eSIM installation package from the eSIM server, where the eSIM installation package includes (i) the eSIM, and (ii) a device configuration file that corresponds to: the mobile device, and at least one Mobile Network Operator (MNO) associated with the eSIM, and (4) upon verifying at least one digital signature associated with the eSIM installation package: installing the device configuration file on the mobile device, and installing the eSIM on an electronic Universal Integrated Circuit Card (eUICC) included in the mobile device.
Abstract:
This disclosure describes procedures for maintaining multiple electronic subscriber identity modules (eSIMs) within a user equipment (UE) device, in such a manner that an inactive eSIM can be maintained/updated at the UE device while an active eSIM is being utilized by the UE device to communicate with a corresponding network. The procedures include, a UE device establishing communications with a first network using an active eSIM, initiating an eSIM manager at the UE device, selecting an inactive eSIM (e.g., associated with a second network) with the eSIM manager, applying a profile update to the inactive eSIM with the eSIM manager during communications with the first network, and deselecting the inactive eSIM with the eSIM manager when the profile update to the inactive eSIM is complete. In some configurations, the eSIM manager and the multiple eSIMs can be stored within a secure element of the UE device.
Abstract:
Methods and apparatus for correcting error events associated with identity provisioning. In one embodiment, repeated requests for access control clients are responded to with the execution of a provisioning feedback mechanism which is intended to prevent the unintentional (or even intentional) over-consumption or waste of network resources via the delivery of an excessive amount of access control clients. These provisioning feedback mechanisms include rate-limiting algorithms and/or methodologies which place a cost on the user. Apparatus for implementing the aforementioned provisioning feedback mechanisms are also disclosed and include specialized user equipment and/or network side equipment such as a subscriber identity module provisioning server (SPS).
Abstract:
Disclosed herein is a technique for enabling Subscriber Identity Module (SIM) toolkit commands to be properly routed within a mobile device that includes an embedded Universal Integrated Circuit Card (eUICC) configured to manage two or more electronic SIMs (eSIMs). Specifically, the technique involves a baseband component of the mobile device and the eUICC initially exchanging information about their eSIM capabilities to identify whether multiple eSIMs are active within the eUICC. During this exchange of information, the eUICC can generate a list of unique identifiers of the active eSIMs that are managed by the eUICC and provide the list of unique identifiers to the baseband component. In turn, the baseband component can update a configuration to manage the list of unique identifiers and use the list of unique identifiers to properly route SIM toolkit commands to the appropriate eSIM within the eUICC.
Abstract:
Disclosed herein are various techniques for preventing or at least partially securing parameters—e.g., Type parameters—of electronic Subscriber Identity Modules (eSIMs) stored within an embedded Universal Integrated Circuit Card (eUICC) from being inappropriately modified by mobile network operators (MNOs). One embodiment sets forth a technique that involves modifying file access properties of the Type parameters of eSIMs to make the Type parameters readable, but not updatable by the MNOs. Another embodiment sets forth a technique that involves implementing eSIM logical containers that separate the Type parameters from the eSIM data within the eUICC, such that the Type parameters are inaccessible to the MNOs. Yet another embodiment sets forth a technique that involves implementing an Operating System (OS)-based registry that is inaccessible to the MNOs and manages Type parameters for the eSIMs that are stored by the eUICC.
Abstract:
Disclosed herein is a technique for revoking a root certificate from at least one client device. In particular, the technique involves causing a secure element—which is included in the at least one client device and is configured to store the root certificate as well as at least one backup root certificate—to permanently disregard the root certificate and prevent the at least one client device from utilizing the specific root certificate. According to one embodiment, this revocation occurs in response to a receiving a revocation message that directly targets the root certificate, where the message includes at least two levels of authentication that are verified by the secure element prior to carrying out the revocation. Once the root certificate is revoked, the secure element can continue to utilize the at least one backup root certificate, while permanently disregarding the revoked root certificate.
Abstract:
Methods and apparatus for correcting error events associated with identity provisioning. In one embodiment, repeated requests for access control clients are responded to with the execution of a provisioning feedback mechanism which is intended to prevent the unintentional (or even intentional) over-consumption or waste of network resources via the delivery of an excessive amount of access control clients. These provisioning feedback mechanisms include rate-limiting algorithms and/or methodologies which place a cost on the user. Apparatus for implementing the aforementioned provisioning feedback mechanisms are also disclosed and include specialized user equipment and/or network side equipment such as a subscriber identity module provisioning server (SPS).